次世代空モビリティの社会実装に向けた実現プロジェクト 調査項目①海外制度・国際標準化動向調査

第2回意見交換会 発表資料 ドローンの法規制・国際標準化動向

2025年2月6日 PwCコンサルティング合同会社

<u>目次</u>

- 1.ドローンの法規制動向
- 2.ドローンの国際標準化動向

ドローンの法規制動向

1.ドローンに関する規制当局・国際標準化機関の全体像

ICAOが規定する国際標準・勧告方式と整合させながら各国航空局が法規制を策定している。

標準化機関等

- 多様な分野の製品 やマネジメントシ ステム等の国際標 準を発行
- UASに加え、AAM もスコープに追加

- 63カ国の航空局と 産業界が参加
- 機体認証、オペレーター・操縦士、安全リスク管理、自動化を中心にガイダンスマテリアルを作成

- 多様な分野の試験 方法や仕様、作業 方法等を標準化
- 航空分野でも幅広 い標準が策定され、 FAAが引用

- 航空宇宙機器・ 自動車関連の民間 標準化団体
- 大型機体を中心に、 機体・システム・ 動力源等の標準を FAAが引用

- 航空システムに 特化した団体
- ・空港のセキュリ ティやカウンター UASといった機体 以外もスコープと し、標準をFAAが 引用

- 航空 (機体や地上 設備、システム) に関する標準を作 成する団体
- WGの50%がRTCA、 10%がSAEと連携 し標準をEASAが 引用

4

2. ICAOの規制検討状況

シカゴ条約Annex 6のPart 1~3は飛行機やヘリコプター等、有人航空機の運航にのみ適用される。 これまで対応していなかった遠隔操縦航空機システム(RPAS)の運航に関するPart 4を2024年4月に 公表した。

2026年11月から適用予定であり、各国がRPASに関する国内規制を定める際の指針となる。

- Annex 6のPart 4は、遠隔操縦航空機システム(RPAS)の運用に関する基準と勧告方式を記述している
- 今回発行された第1版では、RPASの国際的な運用に必要な規定を紹介し、国がRPASオペレータ証明書(RPAS Operator Certificate)を発行するために必要な情報を詳述している(OpenカテゴリーとSpecificカテゴリーを除く)
- Part 4ではまだ扱われていないが、Part 1~3ですでに基準や勧告方式が存在する側面については、それらの規定と整合する方法で運用される

【Annex 6の構成】

Part 1 国際民間航空輸送 - 航空機

Part 2 国際一般航空 - 航空機

Part 3 国際的な運航 - ヘリコプター

Part 4 国際的な業務 - 遠隔操縦航空機システム

出所: https://store.icao.int/en/annex-6-operation-of-aircraft-part-iv-remotely-piloted-aircraft-systems

2. ICAOでの検討状況

ICAO AAM Study Groupは3つのWGで構成される。 Guidance Development WGでUAS規制枠組みのギャップ分析を行っている。

AAM Study Group

Vision WG

AAMに関するICAOのビジョンをまとめたレポート「VISION WG PROGRESS REPORT: ADVANCING THE ICAO VISION FOR ADVANCED AIR MOBILITY」を作成中 Guidance Development WG (Small UAS and UTM WGから 名称・スコープ変更)

5つのタスクを割り当て作業中

- ① ConOps や規制関係資料、国際 規格等の文献調査
- ② UAS規制枠組みとのギャップ分析
- ③ UTM実装ガイダンス文書の構成 検討
- ④ sUAS 及び UTM 関係者が使用 できる語彙集の作成
- ⑤ 航空交通管理環境における eVTOL運用に関するガイダンス 資料作成

Explore WG

以下の事項を検討中

- 自動・自律
- ・ 新しい飛行ルール
- デジタル情報とデータ管理
- 国連の持続可能な開発目標を 支援するAAM

6

3. 欧米の法規制全体像(欧州)

欧州では、EASA(European Union Aviation Safety Agency、欧州航空安全庁)が、operation centric, proportionate, risk- and performance-basedな規制枠組みを策定している。 ドローンの運航リスクベースでOpen, Specific, Certifiedの3カテゴリに分けて規制している。

欧州の制度概要

		(/// (////////////////////////////////	
カテゴリー	Open	Specific	Certified
機体イメージ			Cal
リスク	低リスクな基本操作	Openよりもリスクのある操作	高リスクの操作や複雑な運用
リスク評価	なし	STS, PDRA, SORA	詳細なリスク評価を要求
規制当局の承認	通常は必要なし	必要	必要
その他の操作制約	 適切な訓練を受けた操縦者による 運航 最大起飛重量は25kgまで 人の集まる場所の上空飛行禁止 パイロットの目視内飛行(VLOS) 最大飛行高度は地上から120m (400ft) 空港や航空施設からの所定の距離 を保持する必要 	 リスク評価に基づき事前の許可が必要 BVLOS(目視外)飛行 高度な自動化を含む飛行 人口密集地での飛行 Openカテゴリの制約を超える活動が含まれる LUC(Light UAS Operator Certificate)を組織として有している場合、承認の範囲内で都度申請が不要化 	 航空機、運航者、操縦者は認証を受ける必要がある このカテゴリは、有人航空と同じ方法で規制されることが多い。例えば、航空交通管制との調整や空港での飛行が考えられる 独自の操作的制約は、具体的な運航や機体の種類、使用される技術、予定される活動に応じて定義される

出所: https://eu-lac-app.eu/public/uploads/EU-LAC-APP-Pres-DRONES-Webinar-Dec-2020.pdf

3. 欧米の法規制全体像(欧州)

	4					機体				運航者		操縦者		=u 4= ≈k ==		飛行			運動	忙理
	カテゴ!	,		クラス	特性**1	型式認証	機体認証	登録	登録・証明	1対多	ユース ケース	技能証明	年齢制限	飛行許可	飛行条件	第三者上空	目視外	1対多	リモートID	U-Space
				個人製造	• 250g未満 • 19m/s以下 • 全電動				登録不要			なし ユーザーマニュアルの理	なし			可 (群衆上空を 除く)			不要	不要
	サブカ	テゴリA 1 ^{∞2}		1	 80J未満、またはその代替として900g未満・19m/s以下・全電動 							解のみ			高度120m以下	Party				
Open	サブカ	テゴリA2 ^{×2}		2	• 4kg未満 • 全電動							ユーザーマニュアルの 理解 (個人製造のUAS を除く) 各国の定める講習・試		不要	 高度120m以下 立入管理区画 第三者から水平距離で 30m以上離れて飛行(低 速モードでは5mまで) 		不可		必要	必要
	# 71	サブカテゴリ A 3		3	• 25kg未満 • 3m未満 • 全電動		造者による適合宣言とCEマ ーキング貼付					験(A2は実技も追加)の 完了、または当該カテ ゴリのオンライン試験 の証明取得**7			・高度120m以下 ・立入管理区画 ・住宅地、商業地、工業 地、レジャー区域から					
				4	25kg未清 (模型航空機)										水平距離で150m以上 離れて飛行 ・第三者から水平距離で				不要	不要
				個人製造	25kg未満										30m以上離れて飛行	不可				
	STS: Standard	SAIL I.II	1	5	25kg未満3m未満5m/s以下全電動					対象外 (運航不可)		A2の訓練・試験に試験と 実技を追加		適合宣言	高度120m以下の人口密集地立入管理区画			不可		
	Scenario	相当	2	6	• 25kg未満 • 3m未満 • 50 m/s以下 • 全電動			不要		(Amini-11-13)	追加の用件な し(STS、 PDRA、			(LUC取得者は 承認不要)	・高度120m以下の低人口 密度環境 ・立入管理区画 ・飛行視界5km以上		可			
			801	5相当 ※3	• 25kg未満 • 3m未満 • 全電動				登録必要		SORAで補完)	STS-1と同一	16歳以上 (各国が引き 下げ可)		・高度150m以下の人口密 集地 ・立入管理区画		不可			
				S02 6相当 ※3	• 25kg未満 • 3m未満 • 50 m/s以下 • 全電動							STS-2と同一			・高度150m以下の低人口 密度環境 ・立入管理区画					
Specific	PDRA: Predefined Risk Assessment ^{# 4}	SAIL II 相当	G01		• 3m以下 • 34kJ以下	運航者による	る適合性の宣言								・高度150m以下の低人口 密度環境 ・飛行視界5km以上		可		必要	リスク評価に
			G02		• 3m以下 • 34kJ以下									当局への申請 (LUC取得者は 承認不要)	• 占有空域	可				基づき、各国 が内容・要件 を追加可能
		G03			• 3m以下 • 34kJ以下							A1~A3、STS-01,02の 要件をもとに、運航者が 学科試験の内容を管轄当 局に提案			・占有空域 ・高度30m以下の低人口 密度環境 ・障害物上空					
		SAIL I	, п	対象外		SORAの運航	安全目標に準拠													
	SAIL III		-	全てのクラス、サイズ、 飛行形態	申請可×s×e				リスク評価の 要件に準拠	,				9	スク評価の要件	に準拠				
		SAIL I		_		申請可×s														
		SAIL V	, v I	_		必要	型式証明を適用 する場合は必要 =5	機体認証を受 けた機体は登 録が必要												-
	Certified	i			群衆上空の飛行人・危険物の輸送用機体認証を要するもの	必要**5		1411.70.3E		検討中		検討中	検討中	検討中	人・危険物の輸送用	群衆上空		検討中		

^{※1} 単位はそれぞれ、ペイロードを含む最大離陸重量(g/kg)、水平飛行の最大速度(m/s)を表す。運動エネルギーについては、クラス1(C1)に分類されるUAでは、終端速度で人間の頭部に衝突した場合、人間の頭部に伝わる運動エネルギーが80J未満、PDRA-Gでは、固定 翼機の場合は対気速度(特に巡航速度)、その他の航空機の場合は終端速度を用いて評価した運動エネルギーが34kJ以下を要件とする ※2 2024年1月1日以降の規則。現在、 A1の最大離陸重量上限は 500 g, A2の最大離陸重量上限 は2kgとされる

^{※3} クラス5 (C5), クラス6 (C6) に相当するUAであるが、クラス識別ラベルが貼付されていない機体が対象

^{※4} 現行の法規制ではSAIL II 相当のPDRAが作成されているが、今後SAILII以上のPDRAが追加される可能性がある

^{※5} Special Condition for Light UAS-medium risk、Guidelines on Design verification of UAS operated in the 'specific' category and classified in SAIL III and IVIこよる

^{※6} Means of Compliance to Special Condition Light UAS for UAS operated in SAIL III and belowが適用される

3. 欧米の法規制全体像(米国)

米国では、FAA(Federal Aviation Administration、連邦航空局)の定めるPart 107はMTOM25kg未満の機体による目視内飛行を対象とし、目視外飛行についてはPart 108が準備されている。Part 107規則を逸脱する場合にはWaiver申請により個別に許可を取得する。

米国の制度概要

14 CFRにおけるPart	内容		備考
Part 61	資格認定: パイロット、飛行教官、および地上教官	Part 135の前	ī提として取得
Part 91	一般的な運用	同上	
Part 107	小型無人航空機システム	ドローンの目	目視内運航ルールとして適用
Part 108(準備中)	小型無人航空機システムの目視外飛行	ドローンの目	目視外・自動/自律運航に適用
Part 135	航空運送事業者およびオペレーターの認証	Part 61, 9115	くる商業運航(運送)する際に必要 こ加え、下記のような航空適合証明 に準ずるものを要求
航空適合証明に関する制度	内容		備考
Special Class Airworthiness Certification	Part 21.17(b)に定められる特定クラスの航空機に対す 基準を満たすことの認証	- る航空適合	日本の型式認証に相当 Matternetがこれを取得
49 U.S.C § 44807: Special authority for certain unmanned aircraft systems	特定の無人航空機システムが安全に運用できるかをリアプローチで個別判断し運用許可を与える認証 上段のSpecial Class Airworthiness Certificationをに数年の時間を要するため、それまでのつなぎとして利用して運航許可を得る	取得するの	後述のExemption申請の中で本制 度が適用されている

Part 107または107 Waiverの下行われる運用を除き、機体・システムに上記のような航空適合証明が必要

3. 欧米の法規制全体像(米国)

				機	体				運航者		操縦る	皆			飛行			運航	管理
	カテゴリ		クラス	特性※1	型式認証	機体認証	登録	一般	1対多	ユース ケース	技能証明	年齢制限	飛行許可	飛行条件	第三者	目視外	1対多	リモートID**	UTM
	_	般		55ポンド未満			必要			, ,					不可	不可**3	不可	必要	
		カテゴリ1		0.55ポンド以下	不	要	不要							次の条件をすべて満たすこと				不要	
	第三者	カテゴリ2		11ft-lb未満				登録不要	1対多運航	追加の要件	 証明取得 学科試験(限定的なBVLOS飛行) 	16歳以上	飛行許可は 不要だが、 LAANCへの	対地速度87ノット以下高度400ft以下飛行視界3マイル以上					検討中
	上空飛行	カテゴリ3		25ft-lb未満	適合	証明	必要				の場合は試験を 追加**2)		登録が必要	➤雲より500ft以上低空、かつ雲 から水平距離で2,000ft以上離 れて飛行	可	Part 10)8で勧告	必要	
		カテゴリ4		飛行マニュアル内の 飛行制限に準拠	不要	必要													
	Waive	中請						一般の規定	と同じ					申請の上、	個別に許可を	得る	一般の規		定と同じ
Part 107				輸送用	D&Rを 検討中	必要			輸送用の 証明書	輸送用の 証明書	規定なし	18歳以上	個別に決定	10	個別に決定				
	適用外			49 U.S.C. 44809で規定される機体(娯楽用)		規定なし				娯楽目的に限る	安全試験	16歳以上	不要	娯楽目的に限る 不可		不可			
				49 U.S.C. 44807で規定され る免除を受けた者による 飛行	規定なし	,,,,,,	必要	登録不要	1対多運航 不可	追加の要件はなし	飛行可否の判断 時に考慮される	18歳以上	個別に決定	個別に決	÷		不可	必要	検討中
				機体認証を受けたUASを 使用し、Part 91の下で行う 飛行		必要				農業用の 証明取得	規定なし	規定なし	旧がに人足	NAZA TOPOZ					
		AFR 1							運航不可	規定なし				操縦者が機体を操縦			不可		
	自動飛行 ルール(AFR)		协飛行		飛行リスクに基づく目視外飛行レベル によって決定			規定なし	規定なし RFOSの	REOSの 農業用の		(は、 証 験		機体の操縦は自動でなされる が、必要に応じて遠隔操縦者 が介入			機体数の上	ネット ワーク型	
	に基づく 自動レベル	AFR3		飛行リスクに基づ	〈目視外飛行』	ノベル(こよって)	決定		配置	飛行は 認証取得	に、1対多運航を 含むBVLOS飛行 の内容を追加	規定なし	規定なし	機体の操縦、飛行経路の設定 および不足の事態への対応は 自動でなされるが、操縦者が監 視する場合がある	- 検討中*5	可	限を設定**	L ワーク型	規定なし
Part 108		AFR 4								未検討				飛行中の人的介入なし			未検討		
*2		レベル1		7以dl-# 000,008	不	要								高度500ft未満地上・空中リスクが軽減					
				25,000 ft-lb未満	適合	証明								• 高度500ft未満					
	飛行リスクに 基づく	レベル2A		25,000 ft-16以上 800,000 ft-16以下		E明及び 体認証			+					空中リスクのみ軽減	+	~			
	目視外飛行	レベル2B		不以al− h 000,008	不	要	規定なし		自動飛行	ıv −JV(AFR)(i	基が自動レベルに	よって沢定		高度500ft未満地上リスクのみ軽減	1 目動兒	KıTJU ─JU(AF	-KルL基プX目!	動レベルによって	C 決定
		レベル3		25,000 ft-lb未満	適合	証明								• 高度500ft未満					
				25,000 ft-1b以上 800,000 ft-1b以下		E明及び 体認証								いずれのリスクも軽減されていない					

^{※「}単位はそれぞれ、離陸時及び飛行中のペイロードを含む機体重量(ポンド)、Part 107では人間に与える傷害の大きさを示す運動エネルギー(ft-lb)、Part 108では機体の運動エネルギー(ft-lb)を表す

^{※2 2022}年3月のUNMANNED AIRCRAFT SYSTEMS BEYOND VISUAL LINE OF SIGHT AVIATION RULEMAKING COMMITTEE FINAL REPORT(UAS BYLOS ARC Final Report)における提案

^{※3} UAS BVLOS ARC Final Reportで、限定的な目視外飛行(EVLOS及び構造物の距離及び高さ以内の空域の運航(遮蔽された運航)を超えない範囲の飛行)を許可するようPart 107.31 (VLOS)の改訂、補助者(VO)がBVLOSを支援できるよう、Part 107.33(VO)の改訂を提案

^{※4 25,000} ft-lb以下の機体の場合の操縦者・機体比は、AFR 2では1: 5、AFR 3では1: 20、25,000 ft-lb超の機体の場合は、AFR 2、3いずれにおいても1: 1

^{※5} UAS BVLOS ARC Final Reportにおいて、第三者上空を許可する規定を提案

4. 欧州における規制の策定状況

主な更新点として、Specificカテゴリーのリスク評価手法であるSORA 2.5の発表とSAIL V、VIの機体認証手続きの発表を取り上げる。

						機体				運航者		操縦者				飛行			運動	忙理
	カテゴ	IJ		クラス	特性**1	型式認証	機体認証	登録	登録・証 明	1対多	ユースケース	技能証明	年齢制限	飛行許可	飛行条件	第三者上空	目視外	1対多	リモート	U-Space
				個人製造	250g未満19m/s以下全電動				登録不要			なし ユーザーマニュア ルの理解のみ	なし			可 (群衆上空を 除く)			不要	不要
	サブカ	テゴリA1	× 2	1	 80J未満、または その代替として 900g未満 19m/s以下 全電動 										高度120m以下					
Open	サブカテゴリ A 2 *²		2	• 4kg未満 • 全電動							ユーザーマニュ アルの理解(個 人製造のUASを 除く) 各国の定める講 習・試験(A2は実		不要	・高度120m以下 ・立入管理区画 ・第三者から水平 距離で30m以上離 れて飛行(低速 モードでは5mま で)		不可		必要	必要	
				3	25kg未満3m未満全電動	製造者によ と CEマー	る適合宣言 キング貼付					技も追加)の完了、 または当該カテゴ リのオンライン試 験の証明取得*7			・高度120m以下 ・立入管理区画 ・住宅地、商業地、 工業地、レ					
	サブカ	ラテゴリA:	3	4	25kg未満 (模型航空機)										ジャー区域から 水平距離で150m					
				個人製造	25kg未満					対象外					以上離れて飛行 ・第三者から水平 距離で30m以上離 れて飛行	不可			不要	不要
		SAIL I,	1	5	• 25kg未満 • 3m未満 • 5m/s以下 • 全電動			不要		(運航不可)	追加の用件 なし(STS、 PDRA、	A2の訓練・試験に 試験と実技を追加		適合宣言 (LUC取得	・ 高度120m以下の 人口密集地 ・立入管理区画			不可		
			2	6	• 25kg未満 • 3m未満 • 50 m/s以下 • 全電動				登録必要		SORAで補 完)	(STS-2はBVLOSの 実技も追加)	16歳以上 (各国が 引き下げ 可)	者は承認不要)	・ 高度120m以下の 低人口密度環境 ・ 立入管理区画 ・ 飛行視界5km以上		可			
			S01	5相当 ※3	25kg未満3m未満全電動								STS-1と同一			・高度150m以下の 人口密集地 ・立入管理区画		不可		
	PDRA:		\$02	- 全電動 - 全電動 - 25kg未満 - 3m未満 - 50 m/s以下 - 全電動							STS-2と同一		・高度150m以下の 低人□密度環境 ・立入管理区画							
Specifi c	Predefined Risk Assessme nt ^{**} 4	SAIL II 相当	G01		• 3m以下 • 34kJ以下	運航者によ	:る適合性の 記言							当局への	・高度150m以下の 低人口密度環境 ・飛行視界5km以上		可		必要	リスク 価に基 き、各 が内容
			G02		• 3m以下 • 34kJ以下									申請 (LUC取得 者は承認	• 占有空域	可				要件をi 加可能
			G03		• 3m以下 • 34kJ以下							A1~A3、STS-01, 02の要件をもとに、 連航者が学科試験 の内容を管轄当局		不要)	 占有空域 高度30m以下の低 人口密度環境 障害物上空 					
		SAIL	, п	対象外			「航安全目標 準拠					に提案								
	SORA	SAIL			全てのクラス、サ イズ、飛行形態	申請可※5※6				リスク評価 の要件に準 拠	6				リス	くク評価の要例	牛に準拠			
		SAIL V				申請可*5	型式証明を	機体認証を 受けた機体		J. P. C.										
	Certifie	d			・群衆上空の飛行 ・人・危険物の輸送 用 ・機体認証を要する もの	必要**5	適用する場合は必要*5	(+ 25 CB L7)		検討中	1	検討中	検討中	検討中	, 人・危険物の輸送 群衆 用 上空 検討中					

4. 欧州における規制の策定状況(Specificカテゴリー)

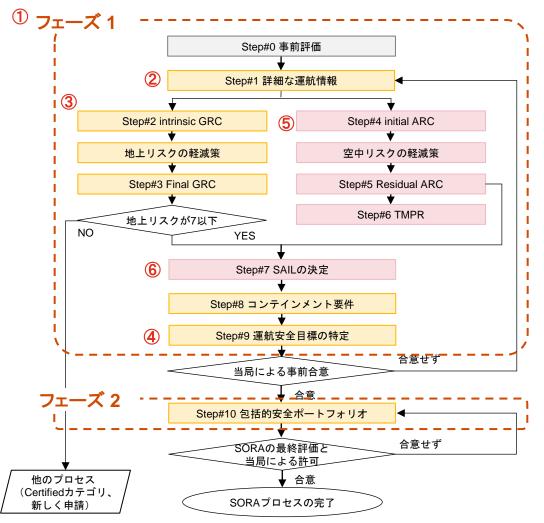
Specificカテゴリーでドローンの運航を計画する場合、リスク評価の実施とPDRAによる飛行許可承認の取得、標準シナリオの適用、オペレータ資格の取得のいずれのか方法をとる。

Specificカテゴリーにおける飛行方法 標準シナリオ(STS) STSに定義されたすべての要件に準拠する 飛行の申告 申告書の提出、NAAの確認により運航可能。 SAILI、II相当 事前に定義されたリスク評価(PDRA) EASAが既にリスク評価を実施した運航シナリ オ。PDRAの要件表の記入、運航マニュアルを 作成する。SAIL II相当 オペレータに 当局による 飛行 よる申請 許可承認 リスク評価(SORA) STSやPDRAが適用されない運航。リスク評価、 緩和策の特定、安全目標遵守を要求 Light UAS Operator Certificate (LUC) オペレータが自己承認 飛行許可を取得することなく運航可能。 SAIL IV以上では必須

4. 欧州における規制の策定状況(SORA 2.5)

SORAは、Specificカテゴリーの運航許可を取得するためのリスク評価手法である。 2024年6月、JARUSがSORA 2.5を発表した。

SORAとは


- SORA(Specific Operational Risk Assessment)は、無人航空機システム(UAS)を各運用環境で飛行さ せるための認可を取得するために必要な情報に関するガイダンスや構成を提供する。
- SORAは、安全に係るリスクを評価し、Specificカテゴリーで提案されたUASの運用の可否を判断するため に使用する。
- 各国の航空当局や地域の航空保安機関の専門家によるグループであるJARUS(Joint Authorities for Rulemaking on Unmanned Systems)がSORAの文書を作成、発行する。

13

4. 欧州における規制の策定状況(SORA 2.5)

SORA 2.5では、明確化や具体化、柔軟性向上を目的としてリスク評価のフレームワークと要求事項を変更した。リスク評価の考え方には変更はない。

SORA 2.5の主な更新点

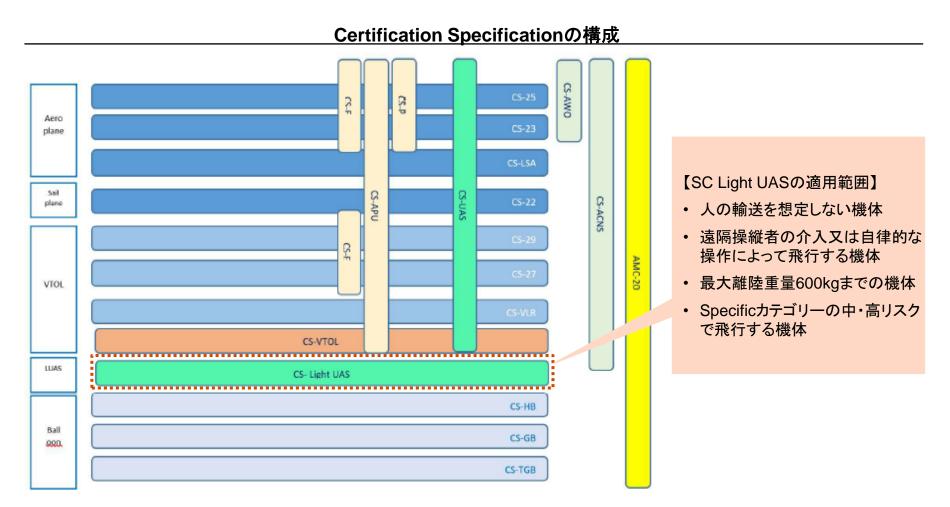
- ① リスク評価プロセスを2つのフェーズに分割
- ② リスク評価に必要な書類の明確化
- ③ 地上リスク評価モデルの確立
- ④ 運航安全目標の要件変更、担当の明確化

SORA 3.0の主な更新点(予定)

- ⑤ 空中リスク計算モデルの作成
- ⑥ 1対多運航や自動化等、特定のユースケースの評価方法を追加

SpecificカテゴリーのSAIL V、VIの認証手順を記した文書を発表した。これにより、SAIL V、VI相当の飛行が可能となった。

	カテゴリ -	-		機体の認	証	運航者·操縦者	飛行	運航管理
	Open		DRONES		/945に基づいた ベルを貼付する			
	標準:	シナリオ			マンレを知り 9 の			
	PI	DRA	飛行マ	?ニュアルで要件/	への適合を示す			
		SAIL I	0807	で定められた要件	への適合を示す*			
		SAIL II	高いロバスト を実施した場	性が要求され、設 合	合DVRが要求される 計と連動したリスク軽減策	DRONES	U-space	
Specific		SAIL III	• SORA 2.0が; 2.5で変更あり		ced」の封じ込め(SORA			5,6
	SORA	SAIL IV	Guidelines on Greigen verification for LIAS operated in the "specific" category	Design Verific	cation Reportを作成する	EU規則2	019/947	EU規則2021/664
		SAIL V	EASA IAW	≥ EASA CAW	機体の認証			
		SAIL VI	2024/1108 2024/1110	2024/1107 2024/1109				


認証対象となる機体だけでなく、コマンドモニタリングユニットについても型式証明を発行する際の手続 きを規定。

認証が必要なUASの型式証明手続き

項目	規則名	改訂/新規	主な内容
初期耐空性 (initial airworthiness)	EU規則 2024/1108 2024/1110	EU規則748/2012 (民間航空機の設計・生産)の改訂	 SpecificカテゴリーとCertifiedカテゴリーの両方で運用されるUASを対象とする型式証明手続きを定めている 機体だけでなくコマンドモニタリングユニット(CMU)に対する型式証明を発行することが可能。その際の認証手続きを規定 EASAは、耐空性、運用適性データ及び環境保護に関する認証仕様やその他の詳細な認証仕様(Certification Specifications)を発行する。製品、部品、器具、UAS、CMU及びCMU構成部品が適合していることを証明するために、管轄当局、組織及び要員が使用できる 認証仕様は開発中であり、要件はSpecial Condition Light UASに記述(次頁)
継続耐空性 (continuing airworthiness)	EU規則 2024/1107 2024/1109	新規	 UASに関する継続耐空性(整備と継続耐空性の管理)に関する要件を定めている SpecificカテゴリーのSAIL V、VI(高リスク)の運航に対応するため、2つのAnnexが含まれている ▶ Part-ML.UAS: UASの継続耐空性に係るタスクや整備プログラムを規定 ▶ Part-CAO.UAS: Specificカテゴリーで運用されるUASに関して、UAS及び構成部品の継続耐空性の管理や整備について、承認証明書の発行または継続の資格を得るために組織が満たすべき要件を規定

出所: https://eur-lex.europa.eu/eli/reg_del/2024/1108/oj/eng https://eur-lex.europa.eu/eli/reg_impl/2024/1110/oj/eng https://eur-lex.europa.eu/eli/reg_del/2024/1107/oj/eng https://eur-lex.europa.eu/eli/reg_impl/2024/1109/oj/eng PwC

SAIL IIIからVIの飛行については、Special Condition (SC) Light UASに記述された要件への適合が求められる。Special Conditionでの認証実績を積んだ後、Certification Specificationが発行される予定となっている。

SAIL III、IV(medium risk)とSAIL V、VI(high risk)では、ペイロードやシステム・装置に関する要件が一部異なる。

<u>SC Light UASの構成(赤字はmedium riskとhigh riskで要件が異なるもの)</u>

SUBPART A - GENERAL

Light-UAS.2000 Applicability and Definitions Light-UAS 2005 Definition of the operational scenario

SUBPART B - FLIGHT

Light-UAS.2100 Mass and centre of gravity

Light-UAS.2102 Approved Flight envelope and environmental conditions

Light-UAS.2105 Performance data

Light-UAS.2135 Controllability, manoeuvrability and stability

SUBPART C - STRUCTURES

Light-UAS.2240 Structural durability

Light-UAS.2250 Design and construction principles

Light-UAS.2260 Materials and Processes

SUBPART D - DESIGN AND CONSTRUCTION

Light-UAS.2300 UA flight control systems

Light-UAS.2305 Landing gear systems

Light-UAS.2325 Fire protection

Light-UAS.2335 Lightning protection

Light-UAS.2340 Design and construction information

Light-UAS.2350 Forced landing or a crash

Light-UAS.2370 Transportation, assembly, reconfiguration and storage

Light-UAS.2375 Payload Accommodation

Light-UAS.2380 Ancillary Equipment not permanently installed on the UA

SUBPART E - LIFT/THRUST/POWER SYSTEM INSTALLATION

Light-UAS.2400 Lift/Thrust/Power systems installation

Light-UAS.2405 Lift/Thrust/Power System Integrity

Light-UAS.2410 Lift/Thrust/Power Endurance and durability

Light-UAS 2415 Lift/Thrust/Power Calibration, Ratings and Operational Limitations

Light-UAS.2430 Energy storage and distribution systems

SUBPART F - SYSTEMS AND EQUIPMENT

Light-UAS.2500 Systems and equipment function - General Light-UAS.2505 General Requirement on Equipment Installation

Light-UAS.2510 Equipment, Systems and Installation

Light-UAS.2511 Containment

Light-UAS.2512 Mitigation Means linked with Design

Light-UAS.2515 Electrical and electronic system lightning protection

Light-UAS.2520 High-Intensity Radiated Fields (HIRF) Protection

Light-UAS.2528 UAS Envelope protection Function

Light-UAS.2529 UAS Navigation Function

Light-UAS.2530 UA External lights

Light-UAS.2575 Command, Control and Communication Contingency

SUBPART G - REMOTE CREW INTERFACE AND OTHER INFORMATION

Light-UAS.2600 Command Unit Integration

Light-UAS.2602 Command Unit

Light-UAS.2610 Instrument markings, control markings and placards

Light-UAS.2615 Flight, navigation, and thrust/lift/power system instruments

Light-UAS.2620 Flight Manual

Light-UAS.2625 Instructions for Continued Airworthiness (ICA)

SUBPART H - C2 LINK

Light-UAS.2710 General Requirements

Light-UAS.2715 C2 Link Performances

Light-UAS.2720 C2 Link Performance monitoring

Light-UAS.2730 C2 Link Security

SC Light UAS(high risk)では、特に雷撃からの保護とHIRFの保護について、medium riskに追加の要件が課されている。

SC Light UAS medium riskとhigh riskで記述される要件の違い

カテゴリー	medium risk	high risk
Light-UAS.2000 適用範囲と定義	(a) 本特別条件は、無人航空機(UA)の型式証明書の発行及び型式証明書の変更に 関する客観的な耐空性基準を規定する (1) Specificカテゴリーでの運用が意図され、その運用が中リスクであることが実証 されているもの	(a) 略 (1) Specificカテゴリーでの運用が意図され、その運用が高リスクであることが実証されているもの
Light-UAS.2375 ペイロードの収容	(a) UA の内部又は外部にペイロードを設置又は収容し、ペイロードを搭載及び解放するための規定は、以下のように設計されなければならない (1) 通常の運用中に、UA 又は第三者に対する危険を最小化すること	(a) 略 (1) 通常の運用中に、UA 又は第三者に対する危険を <mark>防止する</mark> こと
Light-UAS.2510 設備、システム、 搭載	(a) CS-Light UAS.2500 で特定された機器やシステムは、個別に、また他のシステムとの関連性を考慮した上で、以下のように設計、設置されなければならない(1) 想定される故障が発生した場合の危険性が最小化されていること(2) いかなる単一故障によっても壊滅的な故障状態が生じないことが合理的に予想できること(3) SAIL が IV の場合、ハザードにつながるような故障またはその組み合わせを検知、警告、管理する手段が利用可能であること(b) LightUAS.2500でカバーされていない機器やシステムの操作によって引き起こされる可能性のあるハザードは、最小限に抑えられなければならない。	(a) 略 (1) それぞれの致命的な故障状態は極めて起こりにくく、単一の故障から生じることはない (2) それぞれの危険な故障状態は、極めて遠隔である (3) それぞれの大きな故障状態は、遠隔であること (b) Light-UAS 2505およびLight-UAS 2510でカバーされていない機器及びシステムの動作は、UASが認証される動作及び環境限界を通してハザードを引き起こしてはならない 注: Light UAS 2510 SAIL VおよびVIのMoCは、飛行時間当たりの制御不能確率の観点から、規則(EU)2019/947第11条に対するAMCによって規定される安全目標との一貫性を持って開発される
Light-UAS.2515 電気・電子システ ムの雷撃保護	雷撃にさらされる可能性があるUASについては、その故障がUAの安全な飛行および 着陸の継続または緊急回収を妨げるような機能を果たす電気・電子システムは、以下 のように設計および設置されなければならない (a) UASが雷撃にさらされる間又はその後にUASの機能が悪影響を受けないこと (b) UASがにさらされた後、システムの回復がシステムの他の運用上又は機能上の要 件と矛盾しない限り、システムがその機能の正常な動作を適時に回復すること	左記に以下の要件を追加: UASの能力またはリモート・クルーが不利な操作状況に対応する能力を著しく低下させる機能を果たす各電気・電子システムは、UASが雷撃にさらされた後、システムがその機能の正常な動作を適時に回復するように設計され、設置されなければならない
Light-UAS.2520 高強度放射電磁 界(HIRF)保護	HIRFにさらされる可能性があるUASの場合、その機能を果たす各電気・電子システムは、その故障がUAの安全な飛行・着陸の継続または緊急回収の妨げとなるため、以下のように設計・設置されなければならない (a) UASがHIRF環境にさらされている間又はその後に、UASレベルの機能に悪影響を及ぼさないこと (b) システムが、UAS が HIRF 環境にさらされた後、システムの回復がシステムの他の運用上又は機能上の要件と矛盾しない限り、その機能の正常な運用を適時に	左記に以下の要件を追加: UASの能力またはリモート・クルーが不利な運用状況に対応する能力を著しく低下させる機能を果たす各電気・電子システムは、UASがHIRF環境に曝された後、システムが適時にその機能の正常動作を回復するように設計され、設置されなければならない

19

回復すること

5. 欧州における規制の運用状況(Open、Specificカテゴリー)

欧州では、飛行数全体の9割以上をOpenカテゴリーが占めている。 Openカテゴリーを拡張することや、SpecificカテゴリーのSAIL I、IIレベルの飛行数を増やすことが求められている。

カテゴリー別の割合

Specificカテゴリーの内訳

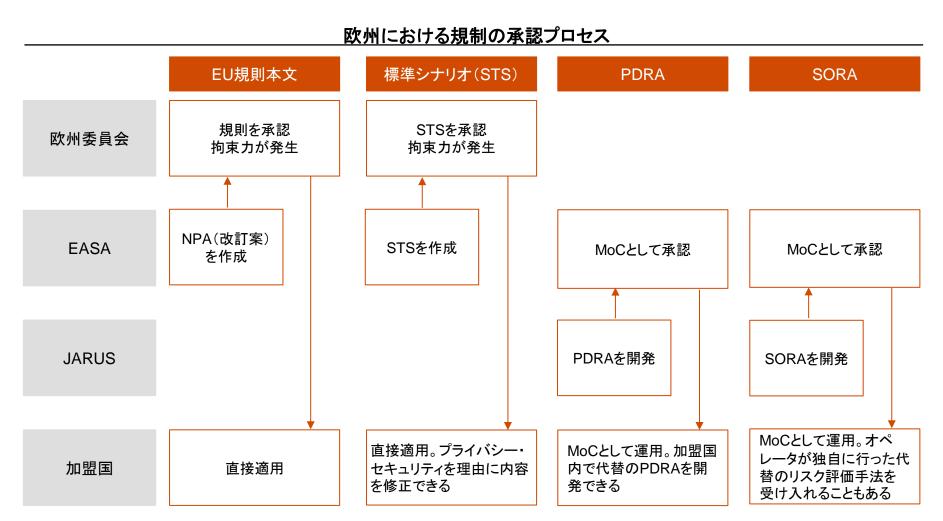
Specific	:カテゴリ ー	飛行件数
海淮ミナロナ	S 01	1,177
標準シナリオ	S 02	494
	S 01	223
	S 02	34
PDRA	G 01	69
	G 02	40
	G 03	37
S	ORA	2,000以上

※2024年6月末時点

5. 欧州における規制の運用状況(PDRA)

現在、5つのPDRAが運用されている。

PDRA	UASの特性		飛行	· 条件		例	検討状況
PDRA	UASU)行注	飛行区域	目視内外飛行	最大対地高度	空域	ניפו	快的1人儿
S01	最大寸法3m MTOM25kg	人口密集地の立 入管理区域	VLOS	150m	管制空域又は 非管制空域有人航空機と 遭遇するリスク が低い	短距離配送 農業	EU規則第11条 AMC4
S02	最大寸法3m MTOM25kg	低人口密度環境 の立入管理区域	BVLOS	150m	管制空域又は非 管制空域有人航空機と 遭遇するリスク が低い	短距離配送 農業 警備	EU規則第11条 AMC5
G01	最大寸法3m 運動エネルギー 34kJ	低人口密度環境	BVLOS	150m	非管制空域有人航空機と遭遇するリスクが低い	長距離配送 警備	EU規則第11条 AMC2
G02	最大寸法3m 運動エネルギー 34kJ	低人口密度環境	BVLOS	_	占有空域	インフラ点検	EU規則第11条 AMC3
G03	最大寸法3m 運動エネルギー 34kJ	低人口密度環境	BVLOS	50m (占有空域を除く)	管制空域又は 非管制空域(50m 以下の場合)	インフラ点検	EU規則第11条 AMC6


5. 欧州における規制の運用状況(PDRA)

4つのPDRAがJARUSで発行され、EASAで承認中。

PDRA	UASの特性		飛行	F条件		例	検討状況
PDRA	UASUJ 行 II	飛行区域	目視内外飛行	最大対地高度	空域	נילו	假削1人儿
05	最大寸法3m	低人口密度環境	BVLOS	120m	50%以上の有人 航空機を検知可 能	全ての運航	JARUSで発行済
06	最大寸法8m	立入管理区域	VLOS/BVLOS	120m	50%以上の有人 航空機を検知可 能	UAの試験	JARUSで発行済
07	最大寸法3m	立入管理区域	VLOS/BVLOS	50m	空港	空港や鉄道点検 警備	JARUSで発行済
08	最大寸法1m	立入管理区域	VLOS	120m	占有空域	ドローンライト ショー	JARUSで発行済

(参考)欧州における規制の承認プロセス

標準シナリオとPDRAはいずれもSAIL I、II相当の低リスクの飛行であるが、STSは欧州委員会の承認を必要とし、提案から運用開始まで数年を要するため、EASAは、MoCであるPDRAの作成を推奨している。

出所: EASA関係者へのヒアリングによる

5. 欧州における規制の運用状況(SORA)

現状、SAIL IIIまでの飛行が実現しており、SAIL IV以上の飛行事例はまだない。 SAIL IIIとなる最終的な地上リスククラスは4であり、内在的な地上リスククラスは4(リスク軽減策を取らない場合)、又は5~8(リスク軽減策を取る場合)となる。

内在的な地上リスククラス

	内在的な地上リスククラス										
UAS	6の最大直径(m)	1	3	8	20	40					
聶	是大速度(m/s)	25	35	75	120	200					
	立ち入り管理区域	1	1	2	3	3					
辛 _	5未満	2	3	4	5	6					
(平方キロ	50未満	3	4	5	6	7					
メロ	500未満	4	5	6	7	8					
密	5,000未満	5	6	7	8	9					
上ル)	50,000未満	6	7	8	9	10					
	50,000超	7	8	SC	RAの対象	外					

リスクレベル5~8の場合は、以下のいずれかのリスク軽減策を取って4に低下させる必要がある

項番	地上リスク軽減策	ロバスト性のレベル					
り	地工リヘク粧減床	低	中	高			
	M1(A) 戦略的軽減策(シェルタリング)	-1	-2*	N/A			
1	M1(B) 戦略的軽減策(運用制限)	N/A	-1*	-2			
	M1(C) 戦術的軽減策(地上での監視)	-1	N/A	N/A			
2	M2 地上への影響低減	N/A	-1	-2			

最終的な地上リスククラスとSAIL

	残留する空中リスククラス						
最終的な 地上リスククラス	ARC-a	ARC-b	ARC-c	ARC-d			
≦2	I	II	IV	VI			
3	Ш	П	IV	VI			
4	III	III	IV	VI			
5	IV	IV	IV	VI			
6	V	V	V	VI			
7	VI	VI	VI	VI			
> 7	SORAの対象外						

^{*} M1(A)とM1(B)はいずれか一方を適用

5. 欧州における規制の運用状況(SORA)

Design Verification Reportの作成やLight UAS Operator Certificateの取得を行うことでもSAIL IIIの 飛行を行おうとしている。

SAIL III飛行が可能な企業(例)								
	Koerschulte Group(ドイツ)	Thales(フランス)	Matternet(米国)					
機体イメージ								
規制当局	ドイツ	EASA	スイス					
飛行許可承認の要否	必要	必要	不要(自己承認)					
概要	 公共スペースでの自動飛行を行い、 宅配を実施 多数機運航が可能なHHLA Skyの Integrated Control Centerを活用 都市部でのBVLOS飛行にあたり、 リスク軽減策を実施 使用機体: X25、X11 機体の特性: MTOM 25kg、25m/s(X25) MTOM 11kg(X11) 	 警戒監視、探知活動のための 長距離飛行を実施 2021年にEASAのDesign Verification Report取得プロセスを 開始し、2024年6月に取得 使用機体: THALES UAS AVEM300 ScaleFlyt 機体の特性: MTOM 6kg、翼幅 3m 	 スイス連邦民間航空局からLight UAS Operator Certificateを取得 これにより、人口密集地域上空でのBVLOS飛行を含む、より複雑な飛行を自己承認できるようになった 使用機体:M2 drone 機体の特性: MTOM 13.2kg、16m/s 					

出所:各社ウェブサイト

6. 米国における規制の策定状況

直近アップデートがあった規制はないが、今後動きがある可能性があるものを取り上げる。

			機体					運航者 操縦者				飛行				運航管理			
	カテゴリ		クラス	特性※1	型式認証	機体認証	登録	一般	1対多	ユースケース	技能証明	年齢制限	飛行許可	飛行条件	第三者	目視外	1対多	リモートID	UTM
	_	般		55ポンド未満			必要							次の条件をすべて満た	不可	不可**3	不可	必要	
		カテゴリ1		0.55ポンド以下	1 不	要	不要				• 証明取得		飛行許可	・ 次の条件をすべて満たすこと→対地速度87ノット以下				不要	
	第三者	カテゴリ2		11 ft-lb未満	***	Tan		登録不要	1対多運航 不可	追加の要 件	学科試験(限 定的な BVLOS飛行		は 不要だが、 LAANCへ	▶高度400ft以下 ▶飛行視界3マイル以上					検討・
	上空飛行	カテゴリ3		25ft-lb未満	- 週1	証明	必要		' '	はなし	の場合(は試 験を追加*2)		の登録が 必要	➤雲より500f以上低空 かつ雲から水平距離 で2,000ft以上離れて	可	Part 10	8で勧告	必要	
		カテゴリ4		飛行マニュアル内の 飛行制限に準拠	不要	必要								飛行					
	Waive	r申請						一般の規定	と同じ					申請の上、	個別に許可	を得る		一般の規	定と同し
Part 107				輸送用	D&Rを 検討中	必要			輸送用の 証明書	輸送用 の 証明書	規定なし	18歳以	個別に決 定	18.	別に決定				
				49 U.S.C. 44809で規 定される機体(娯楽 用)						娯楽目 的に 限る	安全試験	16歳以 上	不要	娯楽目的に限る		不可			
	適用	用外		49 U.S.C. 44807で規 定される免除を受け た者による 飛行	- 規定なし	規定なし	必要	登録不要	44.0 YE 64	追加の 要件はな し	飛行可否の判 断時に考慮さ れる	18歳以	個別に決	h		不可	必要	検討中	
			なし	機体認証を受けた UASを使用し、Part 91の下で行う飛行		必要					規定なし	規定なし	定						
		AFR 1							運航不可	規定なし	• BVLOS用の 認証取得			操縦者が機体を操縦	-		不可	ネット、ワーク型	
	自動飛行ルール	AFR 2						規定なし	RFOSの 配置	農業用の・	(AFR 1では、 Part 107の言 証でも可※3)		されるが、必要に応じて 遠隔操縦者が介入	機体の操縦は自動でな されるが、必要に応じて 遠隔操縦者が介入			機体数の		
	(AFR)に 基づく 自動レベ ル	AFR3		飛行リスクに基づく	目視外飛行	iレベルによ	って決定			展来用の 飛行は 認証取得	験に、1対多 運航を含む BVLOS飛行 の内容を追 加	, 規定なし ; ;		- 検討中 可 ※5	上限を設り	100	規定な		
_		AFR 4								₹検討	1			飛行中の人的介入なし			未検討	1	
Part 108		レベル1		800,000 ft-lb以下	不	要						•		高度500ft未満地上・空中リスクが軽減					
				25,000 ft-lb未満	適合	証明								- 草麻5000土港					
	飛行リス クに基づ	レベル2A		25,000 ft-Ib以上 800,000 ft-Ib以下		明及び 体認証								・ 向及5000代末滴・ 空中リスクのみ軽減			白動しベルで	トって	
	く 目視外飛 行レベル	レベル2B		800,000 ft-lb以下		要	規定なし	É	動飛行ルー	JL(AFR)(Z	基づく自動レベル	ノによって決	定	高度500ft未満地上リスクのみ軽減	自動飛行ルール(AFR)に基文(自動ルベルによって 定 			- & , (,	
				25,000 ft-lb未満	適合	証明								• 高度500ft未満					
		レベル3		25,000 ft-Ib以上 800,000 ft-Ib以下										いずれのリスクも軽減されていない					

2024年5月16日、米国連邦航空局再授権法が制定され、米国議会は、米国連邦航空局に対して 2028年までに1,050億ドル超の歳出を再承認した。

名称	Public Law No: 118-63 FAA Reauthorization Act of 2024
成立日	2024年5月16日
委員会	
内容	
主要なテーマ	 ・米国の安全におけるゴールドスタンダードの堅持 ・FAAの効率と運用の改善 ・アメリカの一般航空(General Aviation)セクターの強化 ・航空業界の人員拡大 ・米国の空港インフラへの投資 ・航空イノベーションの促進 ・旅客体験の向上 ・国家運輸安全委員会(NTSB)の認可

FAAの歳出

用途の概要	目的	額(億ドル)
航空機の認証改革から航空 会社の監督に至るまで主要な 安全プログラム	航空管制官やエンジニアのような安全が重要な人員の雇用、訓練、定着を可能にする	667
主要技術とシステムの近代化	複雑な空域システムの強靭性と発展を確保する	178
空港インフラ整備	全国3,300以上の空港の需要増加への対応と新技術の統合を支援する	193.5
研修•技術•開発	革新的で持続可能な航空宇宙技術の国際競争において、米国が競争力を維持する	15.9
計		1,054.4

再授権法は13章で構成される。「第9章 新規参入と航空宇宙イノベーション」と「第10章 研究開発」において、無人航空機システム(UAS)に言及している。

章	タイトル	サブタイトル	条
1	承認	_	第101条~第104条
2	FAAの監督と組織改革	-	第201条~第231条
3		A 総則	第301条~第372条
3		B 航空サイバーセキュリティ	第391条~第396条
4	航空宇宙労働力	_	第401条~第441条
		A 消費者強化	第501条~第520条
5	旅客体験の改善	B アクセシビリティ	第541条~第552条
		C 航空サービスの開発	第561条~第570条
6	国家空域システムの近代化	_	第601条~第631条
		A 空港改善プログラム修正	第701条~第774条
7	空港インフラの近代化	B 旅客施設使用料	第775条~第776条
		C 騒音・環境プログラム及び合理化	第781条~第795条
8	一般航空	-	第801条~第834条
9	 新規参入と航空宇宙イノベーション	A 無人航空機システム(UAS)	第901条~第937条
	利戍多八〇川王十田17・・ フョン	B 先進航空モビリティ(AAM)	第951条~第961条
10	□ □ 研究開発	A 総則	第1001条~第1032条
	D	B 無人航空機システムと先進航空モビリティ	第1041条~第1045条
11	その他	-	第1101条~第1116条
12	米国運輸安全委員会	-	第1201条~第1223条
13	歳入規定	_	第1301条~第1302条

PwC 出所: https://www.faa.gov/about/reauthorization

UASに関する条文のうち、既存規則の変更又は新規則の作成を指示しているものを紹介する。(赤字筒所)

新規参入と 航空宇宙 イノベーション 第902条 北極圏における無人航空機 第903条 小型UAS安全基準の技術的修正 第904条 空港の安全性、空域の危険緩和と施行 第905条 レーダーデータ試験プログラム 第906条 e-conspicuityの調査 第907条 Remote IDの代替遵守手段 第908条 Part 107Waiverの改善 第909条 環境レビューと騒音証明 第910条 山火事対応におけるUASの使用 第911条 FAAのインフラに対するUAS点検のパイロット プログラム 第912条 ドローンインフラ点検助成金プログラム 第913条ドローン教育・労働力訓練助成金プログラム 第914条ドローン労働者訓練プログラム調査 第915条 先進航空諮問委員会の終了 第916条 無人自律飛行諮問委員会 第917条 NextGen諮問委員会の会員拡大 第918条 省庁間調整

第919条 無人UASの運用を可能にするため の規制の見直し

第920条 BEYONDプログラムの延長 第921条 UAS統合戦略 第922条 飛行前に知っておこうキャンペーンの延長 第923条 公共航空機の定義 第924条 FAAのUAS自動化に関する包括的計画 第925条 UAS試験飛行場 第926条 係留されたUASの公共安全利用 第927条 特定のUASに対する特別権限の拡大 第928条ドローンシステムの娯楽運用 第929条 指定の申請 第930条 UASの目視外飛行 第931条 受入れ可能なリスクレベル及びリスク評価方法 第932条 第三者サービスの承認 第933条 商業用荷物配送UASによる危険物の輸送に関する 特別権限 第934条 公海上での運用 第935条 公共の集会の保護 第936条 対象ドローンの禁止 第937条 メキシコ湾における革新的技術の利用拡大

研究開発

第1041条 定義 第1042条 省庁間作業部会 第1043条 戦略的研究計画

第901条 定義

第1044条 FAAのUAS及びAAMの研究開発 第1045条 研究、開発、実証、試験のためのパートナーシップ

2021年1月に発行されたドローンのリモートIDに関する最終規則ではネットワーク型リモートIDの要件検討が除外されていたため、FAA再授権法第907条では、FAAが規則を見直し、その結果を本法律成立後1年以内に議会へ提出することが規定されている。

リモートID最終規則におけるネットワーク型リモートIDに関する記述(抜粋)

(前略)

C. ネットワーク型リモートID要件の除外

NPRM(注:Notice of Proposed Rulemaking)において、FAA は、標準リモートIDのUAS及び限定リモートIDのUAS に対し、ネットワーク接続を通じてリモートIDメッセージ要素を送信することを義務付けることを提案した。この要件に従うためには、UASは、インターネットを通じて、リモートID UAS サービス・サプライヤー(USS)と呼ばれる第三者サービス・プロバイダーにリモートIDメッセージ要素を送信しなければならなかった。リモートID USSは、インターネットを通じてリモートID情報を収集し、適切な場合には広める。

NPRMに対して、FAAは、ネットワーク要件に対する国民の反対と、ネットワーク要件の実施に関する技術的な課題を特定する、ネットワーク要件に関する重要なフィードバックを受け取った。FAAは、ネットワーク・ソリューションとUSSフレームワークの利用を提案した時点では、これらの課題の多くを予見しておらず、また説明もしていなかった。パブリック・コメントに基づき、これらの課題を慎重に検討した結果、FAAは、リモートID USS にインターネット接続を介してリモート識別メッセージを送信するという要件を本ルールメイキングで除外することを決定した。

インターネットを通じてリモートID情報を送信するという要件がなければ、提案されているような限定リモートIDのUASは、リモートID情報を普及させる手段を持たないことになる。その結果、NPRMで提案された限定リモートIDのUASは、もはや実行可能なコンセプトではなくなった。しかしながら、FAAは、既存の無人航空機がリモートID要件に準拠する必要性を認識している。その必要性を満たすため、FAAは本規則において、無人航空機にリモートIDブロードキャスト・モジュールを後付けできるよう、規制の枠組みを修正した。

(後略)

再授権法第907条での規定

- FAA長官は、2021年1月15日に発行されたFAA最終規則「無人航空機のリモートID(Remote Identification of Unmanned Aircraft)」を見直し、評価し、UA製造者及び運航者が、ネットワーク型リモートIDを含む代替手段により遵守できるかどうかを判断すること
- ・FAAは、法案成立後1年以内に評価結果に関する報告書を議会の該当委員会に提出しなければならない

^{*} 標準リモートIDは、内蔵型のリモートIDを指し、ドローンのIDや位置情報を送信するもの。ブロードキャストリモートIDは、外付け型で、目視内飛行にのみ利用可能

第908条では、連邦規則集第14編第107部に基づいて申請されるWaiverの審査プロセスを改善することが規定されている。申請書の様式を標準化することや、承認した全てのWaiverを一般公開すること、過去に承認したWaiverに類似する申請についてプロセスを効率化すること等が記述されている。

Waiver申請プロセスと実施事項

Waiver申請者が申請を提出

- FAA DroneZoneから申請する
- Waiver Safety Explanation Guidelinesを 使用する
- Reference #を割り当てる

FAAが申請を受領

• Waiver申請を分析担当者へ割り当てる

FAAが申請を評価

- 安全分析とレビュー
- ・追加情報の要求(RFI)
- 管理

FAAが申請を承認又は否認

- ・申請者へ申請承諾もしくは否認を通知
- 承認はウェブサイトで公開

再授権法第908条で規定された内容

修正されたWaiverの審査

過去に発行された免除証明書の修正又は更新の申請については、適宜、迅速な審査プロセスを確立すること

Waiver申請書の標準化

- ・Waiver申請者が記入する申請書を自由記述形式としないこと
- 過去の証明書免除申請から収集したデータを活用すること。その際、ビッグデータ分析や機械学習を行うこと

財産へのアクセスの考慮

免除証明書を発行するか否かを決定する際、FAA長官は

- Waiver申請者が、飛行区域内のすべての不動産への アクセスを管理しているかどうかを検討すること
- アクセス管理による安全性の向上を認識し、考慮すること

過去に承認されたWaiverの優先的使用

・過去に承認されたWaiver申請と実質的に類似していると FAA長官が判断した申請については、必要に応じて申請 の承認を効率化できる

一般公開

FAA長官は、発行されたすべてのWaiver証明書について、 FAAのウェブサイト上で公表すること

- 条項、条件、制限
- 空域クラス及び空港、又はヘリポート付近での運航制限

31

FAAは、再授権法制定後4カ月以内にBVLOS規則案を、16カ月以内に最終規則を公表することが求められているが、2025年1月時点で未公表。

BVLOS規則に関する規定

項目	内容
UASの目視外飛行 (第930条)	 FAAは、UASがBVLOSを運用するためのパフォーマンスベースの規制の道筋を確立するため、4ヶ月以内に規則案公示を出すこと 本条に基づき策定される規則案は、BVLOS運用の受入れ可能なリスクレベル及び遠隔操縦者の基準を定め、UASの関連要素の承認プロセスを提供し、有人航空の安全を確保するものとすること 規則案公示から16ヶ月以内に、FAA長官は最終規則を出さなければならない いかなる条項も、2024年FAA再授権法の制定日時点で進行中のUASのBVLOS運用に関連する規則制定作業を再調整するよう機関に要求するものと解釈されてはならない
受入れ可能なリスクレベル及びリスク評価方法 (第931条)	FAAは、BVLOSを含む特定のUAS飛行を可能にするために、受入れ可能なリスクレベルを決定することを可能にするリスク評価手法を開発することFAAは、リスク評価手法をFAAのウェブサイト上で一般公開しなければならない

BVLOS規則策定のタイムライン

BVLOS規則に盛り込むべき最低要件も規定されている。BVLOS飛行のために設定したリスクレベルとSORA 2.5との違いを理解する必要がある。

BVLOS規則に関する規定

項目	内容
BVLOS規則で含めるべき 最低要件 (第930条続き)	要求されるBVLOS規則案は、最低限、以下を定めるものとする: (1) 2024年FAA再承認法第931条に従って策定されたレベルを含む、BVLOS UAS運用の受入れ可能なリスクレベル (2) UAS飛行の自動制御及び管理の様々なレベルを考慮した、BVLOS飛行のための遠隔操縦者又はUAS操縦者の基準 (3) 特別耐空証明書の作成、又は連邦航空局が認めた適合手段への製造者の適合宣言を活用することができるUAS及び関連要素(FAA長官が定義する)の承認又は受け入れプロセス。当該プロセスは (A) 型式証明又は製造証明の使用は必要としないが、認めることができる; (B) 以下のUASの耐空性を検討すること (i) FAA長官が決定する最大総重量又は最大運動エネルギーの範囲内であること (ii) 長官の定める最大速度制限の範囲内で運用される (C) 当該システムに対し、国家空域システムにおいて、長官の定める高度制限で運用することを要求することができる (D) 当該システムに対し、FAA長官の定めるところにより、構造物の半径又は構造物の直近の上限からの離隔距離で運用することを要求できる (4) (3)に記載されたとおり承認又は受理されたUASの運用規則 (5) BVLOS運用を支援するための、ネットワーク型リモートID等、ネットワークによる情報交換のためのプロトコル(適切な場合) (6) 国家空域システムで運用される有人航空機の安全性と、熱気球を含む特定の航空機の操縦性と技術的限界を考慮すること

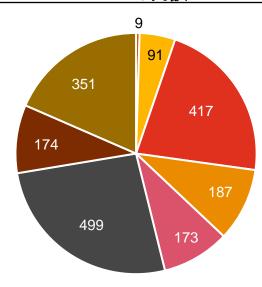
33

7. 米国における規制の運用状況(Part 107)

Waiverによる規則免除が定義されていない運航を行いたい場合に、ケースバイケースの判断を要求するExemption申請を行うことが可能である。

免除申請について	 連邦規則集第 14 編(14 CFR) の規則要件の緩和を求める連邦航空局(FAA)への申請である FAAは、それが公共の利益にかなうものであり、同等レベルの安全性を提供する場合には、免除を許可することができる WaiverとExemptionが存在する
WaiverとExemptionの差異	Waiverは規則が逸脱を許可する場合に発行されるWaiverによる規則逸脱が定義されていない運航を行いたい場合に、ケースバイケースの判断を要求するExemption申請を行うことが可能
WaiverでなくExemptionを用いる例	 機体・システムの航空適合証明なしに商業運航を行う場合 Part 91.7(Civil aircraft airworthiness)やPart 135.25(Aircraft requirement)で要求される機体航空適合証明からの逸脱はWaiverの範囲外
Exemptionの申請手順	 申請書に少なくとも以下の必要な情報が含まれていることを確認する 運用コンセプト (Concept of Operations) 運航マニュアル (Operations Manual) 緊急手順書 (Emergency Procedures) チェックリスト (Checklists) 整備マニュアル (Maintenance Manual) 訓練プログラム (Training Program) 飛行履歴 (飛行時間、サイクル、事故など) 安全リスク分析 (Safety Risk Analysis) 2. 14 CFR Part 11.81を参照の上、public docketに免除申請を提出する

wC 34


7. 米国における規制の運用状況(Part 107)

FAAが承認したPart 107 Waiverはのべ1,901件である。目視内飛行と第三者上空飛行のWaiverが特に多く、400件を超えている。

Part 107 Waiverの種類

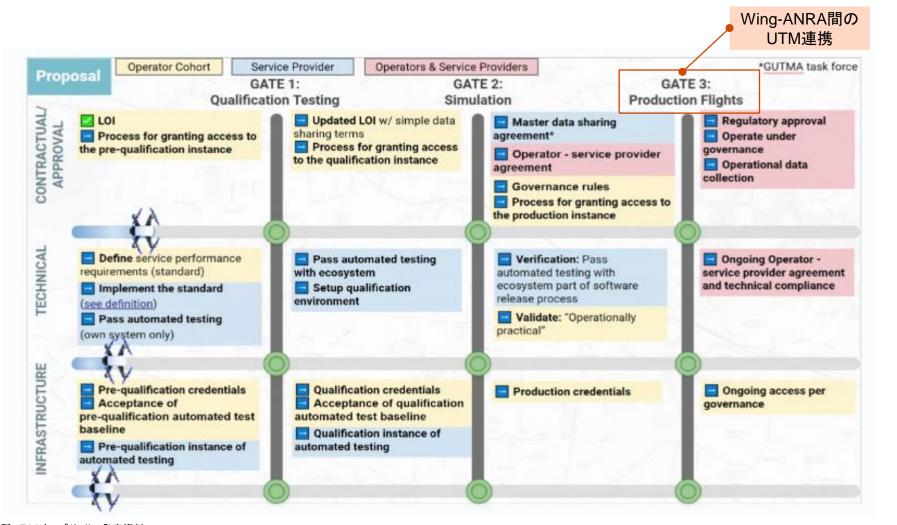
番号	名称	内容
25	移動車両・航空機 からの飛行	人口密集地における移動中の航空機又は 車両からsUASを飛行させること
29	夜間飛行	夜間又は市民薄明の時間帯に、衝突防止照 明なしでsUASを飛行させること
31	目視内飛行	裸眼でsUASの位置、高度、姿勢、動きを明確に判断できる能力を超えてsUASを飛行させること
33	補助者	すべての目視観測者の要件に従わずに、目視 観測者を使用すること
35	多数機飛行	一人の遠隔操縦士だけで複数のsUASを飛行させること
39	第三者上空飛行	カテゴリー1、2、3、4の条件を満たさないsUAS を使用して第三者の上空を飛行させること
51	sUASの飛行制限	・対地速度時速100マイル以上、 ・地上高度400フィート以上 ・視程3カイリ未満 ・雲から垂直方向に500フィート又は水平方向 に2,000フィート以内
145	移動車両上空の 飛行	カテゴリー1、2、3、4の条件を満たさないsUAS で、移動する車両の上空を飛行させること

Waiverの内訳*

- 107.25 移動車両・航空機からの飛行
- 107.29 夜間飛行
- 107.31 目視内飛行
- 107.33 補助者
- 107.35 多数機飛行
- 107.39 第三者上空飛行
- 107.51 sUASの飛行制限
- 107.145 移動車両上空の飛行

^{* 1}件で複数のWaiverが申請されているケースも含む

7. 米国における規制の運用状況(Part 107)


現在、BVLOS Exemptionを取得した事業者は7社存在し、配送を担う5社の要件(Conditions and Limitations)の中身はほぼ共通化されている。

	No.	承認日	飛行目的	申請の要旨
Phoenix Air Unmanned	No. 20973	2023/8/24	線状のインフラ運用、空中作業、 空中写真、測量、および電力線お よびパイプラインの巡回および検 査など	人口密度、道路の混雑、空港への近接、及び/又は空域の理由により、BVLOSの基準を満たさない運用も、特定の制限付きでPICのVLOS内で飛行することができるようにすることを要請
uAvionix	No. 21097	2023/9/6	eVTOL無人航空機システム (UAS)の研究および開発	14 CFR 61.3 (a) (1)の操縦者要件の代わりに、 パイロットインコマンド(PIC)がRemote Pilot Certificateを保持し、UAS及び運用環境に特化し た運航者開発のトレーニングを完了することで許 可することを要請
Zipline	No.19111B	2023/9/18	医薬品配送	補助者の代替となるDAAシステムの使用を許可す ることを要請
UPS Flight Forward	No.18339D	2023/9/6	医薬品配送	地上監視システム使用の下、遠隔操作センター (ROC)を組み込み、遠隔パイロットインコマンド (RPIC)がROCから離れた場所で飛行を行うことを許 可することを要請
Wing (Alphabet 子会社)	No. 18163E	2023/12/4	商用の荷物配送	補助者(VO)を配置せずに、目視外飛(BVLOS)で Part135の商用運航を許可することを要請
Amazon Prime Air	No. 18601D	2024/6/7	商用の荷物配送	過去のPart135 exemption (18601C)に対し、FAAに 柔軟性を与えるためのC&Lsの修正と、特定の項目 に対し、曖昧さや矛盾を解消するための特定の修正 を要請
Causey Aviation	No. 19508A	2023/10/26	商用の荷物配送	No. 18339D(UPS FFに対して公布された exemption)を引用する形で、目視外飛行(BVLOS) でPart135の商用運航を許可することを要請

出所: 各社Exemption 36

7. 米国における規制の運用状況(運航管理)

Gate 3までは民間主導で承認作業を実施し、Gate 3後にFAAが承認する。 Wing-Zipline間のUTM連携は承認済であり、Wing-ANRA間の連携については、Gate 3 Production Flightsの段階となっている。WingによればGate 3で初めて実フィールドでの運用ができる、とのこと。

 出所: FAAウェブサイト、発表資料 ™C

8. グローバルの規制検討状況(機体の認証)

2024年10月29日、欧州、米国、カナダ、ブラジルの航空当局で構成される認証管理チームが、2025年 から2030年までの連携戦略を発表した。

ドローン・空飛ぶクルマを含む新技術の認証活動にも言及しており、4者間で規制のハーモナイゼーショ ンが進んでいくとみられる。

連携戦略の概要

文書名

Collaboration Strategy 2025-2030

作成者

- 航空当局の認証管理チーム(Certification Management Team (CMT))
 - ✓ ANAC(ブラジル)
 - ✓ EASA(欧州)
 - ✓ FAA(米国)
 - ✓ TCCA(カナダ)

背景

- 航空業界のグローバル化を背景に、規制を調和させ、共通の 業界課題に対応するために、2015年にFAA、EASA、TCCA、 ANACの4者がCertification Management Team を発足
- CMTでは4者の認証サービス/部門の責任者が、共通する技術 的、政策的、二国間協定の認証、製造、輸出、及び継続的な耐 空性の問題を共同で管理する
- 2016年にCMT協働方針に合意
- 今回発表した文書はCollaboration Strategy Revision 1で、新 たな規制要件、新興技術、環境の持続可能性を伴う、増大する 課題へより焦点を当て、CMTが今後5年間にわたって追求すべ き一連の戦略目標をもたらすことを目的にしている

8. グローバルの規制検討状況(機体の認証)

連携戦略において、認証プロセスの効率化や新技術移転プロセスの許認可方法等、4つの戦略目標を示している。ドローン・空飛ぶクルマは主に戦略目標3に該当する。

認証管理チームの戦略目標

ビジョンと目標

CMT当局は、積極的に信頼を醸成するイニシアティブとリスクベースの検証原則を用いてCA証明を承認する

重点分野

パートナーシップの拡大

相互の証明システムを活用して、重複する認証の軽減又は削減

認証ポリシーの調整

既存の証明システムの整合性と、共通の原則及び政策の 開発

戦略目標1

CMT間の認証プロセスの 効率化の改善

戦略目標2

CA*1によって行われるオペレーション評価活動の VA*2認識の向上

戦略目標3

調和されていない新たな 技術の製品について、 CAとVA間での許可

戦略目標4

基準と政策の調和を図る ため、規則制定プロセスを 最大限調整

無人航空機システムについて、自律飛行を含む先進的航空機運用の支援における航空機及び 設備の承認をカバーする共通要件及びMoCを特定し、合意することが求められている

^{*1} CA (Certificating Authority): 証明当局のこと。CAが証明書を発行する側、適合性を認定する

^{*2} VA (Validating Authority): 認証当局のこと。CAの承認、証明※又は認定を受け入れる ※設計、製造及び耐空証明並びに環境適合性の証明

9. 日本での要検討事項

欧米と日本では、特に、運航リスク評価が求められる範囲と、機体の認証が必要な飛行の範囲に差異がある。

	欧州	米国	日本
運航リスク評価が 必要な飛行	 Openカテゴリーでは不要 SpecificカテゴリーではSORA 2.0 から2.5に基づく地上・空中リスク評価に移行する予定 	 Part 107では不要 現在検討中のPart 108(目視外飛行)では、目視外飛行で受入れ可能なリスクレベルを設定する見込み 	 SORA 2.0に基づくガイドラインを 作成し、カテゴリーIII(第三者上空 飛行)でリスク評価を行うことが 推奨されている
機体の認証手続き	 Openカテゴリーでは不要 SpecificカテゴリーのSAIL I~IVでは不要 SpecificカテゴリーのSAIL V、VIで必要 Certifiedカテゴリーで必要 	 Part 107の第三者上空飛行(カテゴリー4)で必要となっているが、実際は機体の認証は取得せず、49 U.S.C. 44807でConOpsベースで例外申請許可(grant)を取得している 運用コンセプト 運航マニュアル 緊急手順書 チェックリスト 整備マニュアル 訓練プログラム 飛行履歴 安全リスク分析 現在検討中のPart 108(目視外飛行)ではリスクレベルに応じて必要となる可能性がある 	 カテゴリーIでは不要 カテゴリーIIで飛行許可承認を取得しない場合、二等操縦士技能証明とともに第二種機体認証が必要 カテゴリーIIIで一等操縦士技能証明とともに第一種機体認証が必要

ドローンの国際標準化動向

1.ドローンに関する国際標準化機関

FAAやEASAをはじめとする規制当局が策定している法規制・MoCで引用されている規格を標準化機関等が開発している。

法規制・MoCの検討材料

法規制・MoCの検討材料

標準化機関等

- 多様な分野の製品 やマネジメントシ ステム等の国際標 準を発行
- UASに加え、AAM もスコープに追加

- 63カ国の航空局と 産業界が参加
- ・機体認証、オペレーター・操縦士、安全リスク管理、自動化を中心にガイダンスマテリアルを作成

- 多様な分野の試験 方法や仕様、作業 方法等を標準化
- 航空分野でも幅広 い標準が策定され、 FAAが引用

- 航空宇宙機器・自動車関連の民間標準化団体
- 大型機体を中心に、 機体・システム・ 動力源等の標準を FAAが引用

- 航空システムに特化した団体
- 空港のセキュリ ティやカウンター UASといった機体 以外もスコープと し、標準をFAAが 引用

- 航空 (機体や地上 設備、システム) に関する標準を作 成する団体
- WGの50%がRTCA、 10%がSAEと連携 し標準をEASAが 引用

2. 国際標準化機関の最近の動向

自動・自律化、セキュリティ、Counter-UAS等に関する標準化が加速している。 米国では今後2年程度、Part 108に対応した標準策定が活発になる。

標準化機関	WG	最近の動向
ASTM	• F38 Unmanned Aircraft Systems等	• Part 108が公開されると、既存の標準規格とのギャップ分析を行い、 2年程度はPart 108のMoC関連の標準化 を行うことが検討されている
		• 空中リスク評価手法に関するガイダンスを検討開始
SAE	• SAE S-18	・システム開発におけるセキュリティや安全性検証方法(MBSE(Model-Based System Engineering)を開発補助プロセスに取り込むか)に関する標準が複数提案されている。 ARP4754B/ED-79B(開発保証)やARP4761(安全性評価方法)のアップデートする可能性がある
		• S-18A(UAS、AAMを含むAutonomy)では、既存規格の課題を分析したペーパーを発表し、それらに対応した開発保証の方法、安全評価に関する標準化の議論を開始予定
RTCA	• SC-238	SC-238がEUROCAE WG-115と共同でED-322(<u>非協調ドローン検知システム</u> のパ フォーマンスと相互運用性要件)を公開した
EUROCAE	WG-105 Unmanned Aircraft System (UAS)	・ <u>衝突回避、Command, Control, Communication (C3)、UTM、設計・耐空性、RPAS</u> の自動化、SORA
		• 2024年12月、SAIL III、IVのMoCを発表(ED-325 vol.1)。SHEPHERDプロジェクトでEASAと役割分担し、EUROCAE対応部分はED-325に含まれる(vol.2)
		・SG-3でUTM関連の規格を作成中
ISO	• TC 20/SC 16	・オペレーションやUTM、検査手法、衝突回避に関する議論が活発化
	現在8つのWGが存在	・Counter UASもスコープに追加
JARUS	Operation Personnel & Organization	・SORA 3.0の策定を開始 (空中リスクの定量化が2.5から3.0での主要な変更点)
	AirworthinessSafety and Risk Management	・自動・自律化した機体・運航に関する議論を各WGで開始
	計3つのWGが存在	

3. 国際標準規格一覧の概要

以下のような国際標準一覧を作成し、ReAMoウェブサイトで公開している。 月次レポートの【別紙1】標準化機関のWG及びWork Item一覧として掲載している。(今年度の更新箇所は(参考)を参照)

準化機 	関 WG	No.	規格•W	ork Item	出	犬態 		関連	分野	
標準化機関	WG	Number	Work Item	Work Item(機械翻訳)	Status	追加	関係分野 一般的要件 全般	機 設計と耐空 性	体 高リスク空域 における小 型UAS	空域管 UAS運航管 理
3GPP	SA WG2 - System Architecture and Services	TR 23.700-58	Study of Further Architecture Enhancement for UAV and UAM	UAVとUAMのアーキテクチャ強化の研究	Ongoing	2022年12月度追加		0		
3GPP	SA WG2 - System Architecture and Services	TS 23.256	Support of Uncrewed Aerial Systems (UAS) connectivity, identification and tracking; Stage 2 (R17)	無人航空システム(UAS)の相互通信能力、識別、追跡:ステージ2(リリース17)	Published	2022年12月度追加				
3GPP	SA WG3 - Security and Privacy	TR 33.854	Study on security aspects of Uncrewed Aerial Systems (UAS)	UASのセキュリティの側面の研究(リリース17)	Published	2022年12月度追加		0		
3GPP	SA WG6 - Application Enablement and Critical Communication Applications	TR 23.755	Study on application layer support for Unmanned Aerial Systems (UAS)	UASのためのアプリケーションレイヤーサポートの研究(リ リース17)	Published	2022年12月度追加		0		
3GPP	SA WG6 - Application Enablement and Critical Communication Applications	TS 23.255	Application layer support for Uncrewed Aerial System (UAS); Functional architecture and information flows; Functional architecture and information flows (R17)	無人航空システム(UAS)のためのアプリケーションレイヤー サポート	Published	2022年12月度追加		0		
3GPP		ATIS-I-0000092	3GPP Release 17 - Building Blocks for UAV Applications	UAVアプリケーションのための構築ブロック(リリース17)	Published	2022年12月度追加		0		
3GPP		TR 23.754	Study on supporting Unmanned Aerial Systems (UAS) connectivity, Identification and tracking	無人航空システム(UAS)の支援についての研究	Published	2022年12月度追加	0			
3GPP		WI810049	Remote Identification of Uncrewed Aerial Systems	無人航空システムの遠隔識別	Published	2022年12月度追加				0
A4A	MSG-3 SHM Working	A4A MSG-3	Operator/Manufacturer Scheduled Maintenance	運転者/製造業者定期整備開発	Ongoing		0			
ACJA			Reference Method for assessing Cellular C2 Link Performance and RF Environment Characterization for	セルラー方式C2リンクの評価手法の参考資料	Published	2022年12月度追加				
ACJA			Network Coverage Service Definition V1.0	ネットワークカバレッジサービスの定義 V1.0	Published	2022年12月度追加				
ACJA			LTE Aerial Profile V1.00	LTE航空プロファイル V1.00	Published	2022年12月度追加				
AIA	UAS Data Protection and Privacy Standard Practice working group	NAS9948	UAS DATA PROTECTION AND PRIVACY	UASのデータ保護とプライバシー	Published	2022年12月度追加		0		
ANSI/CTA	CTA R06 Intelligent Mobility Committee WG 23 Unmanned Aerial Systems	1	Small Unmanned Aerial Systems Serial Numbers	小型無人航空機シリアル番号	published		0			
ANSI/CTA	CTA R14 WG3 Cybersecurity for Small Unmanned Aerial Systems	2088.1	Baseline Cybersecurity for Small Unmanned Aerial Systems	小型無人航空機のベースラインとなるサイバーセキュリティ	Published			0		

4. 国際標準規格一覧の参照先

国際標準一覧の作成にあたり、欧州のEUSCGや米国のANSIのレポート及び各標準化機関のウェブサイトを参照している。

欧州

The European UAS Standards
Coordination Group (EUSCG)

- 「European UAS Standardization Rolling Development Plan(RDP)」の作成
- 各標準化団体において、機体の安全確保やU-Spaceの規制の成立のためにどのような議論がなされているかを整理

SHEPHERD (HORIZON 2020 funding PJ)

- EUの資金援助で3年間実施されるEASAのリサーチプロジェクトであり、安全確保の観点から標準規格と規制との適合性を確認
- AW DRONESでスコープ外とされていた、技術的観点でのGap分析を実施

米国

ANSI Unmanned Aircraft Systems Standardization Collaborative (UASSC)

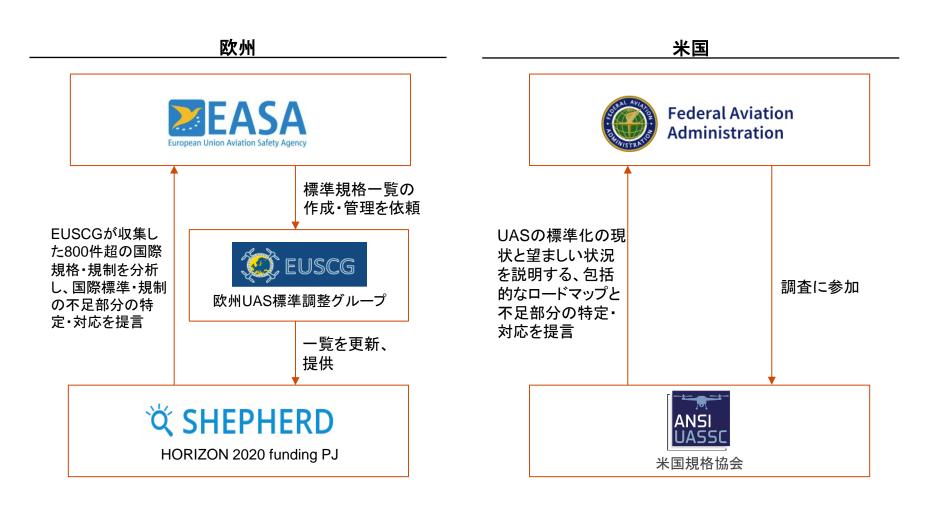
- ドローンビジネス成立のためのロードマップとギャップ分析結果をまとめたレポートを 作成
- 毎年1、2回「Gaps Progress Report」を公開
 - ギャップには優先順位が付けられている
 - 標準規格が定められていない73のギャップを認識(2024年11月時点)

標準化機関

American Society for Testing and Materials

SAE International

Radio Technical
Commission for
Aeronautics



European Organization for Civil Aviation Equipment

5. 国際標準規格の分析体制

欧州では、ドローンに関するEUの規則に既存の国際標準規格が適合するかを調査するSHEPHERDプロジェクトを行った。

米国では、ドローンビジネス成立のために不足する標準化領域を調査している。

5.1. 国際標準規格の分析体制(SHEPHERDプロジェクト)

SHEPHERDプロジェクトでは、各分野の専門家を集めたコンソーシアムを組成し、既存の国際標準が Special Condition Light UASやSORA、U-Spaceの要件を規定するのに十分かを分析した。

時期	プロジェクト・団体名	取組概要
2018年2月	<u>The European UAS Standards</u> Coordination Group (EUSCG)	 欧州におけるUAS関連の標準化活動を調整 EASAが主導し、「European UAS Standardization Rolling Development Plan(RDP)」を作成。定期的に更新し、最新版はv8.0(2023年4月公開) 各標準化団体における標準化動向や規制動向をもとに約800の規格を整理
● 2019年1月	AW-Drones (HORIZON 2020 funding PJ)	 EUSCGが整理した規格について、Special Condition Light UAS、SORA、U-spaceの要件に適合する規格を特定 機体メーカ、ソリューション開発、運航管理、コンサルティング会社で構成
● 2022年5月 ~2024年5月	SHEPHERD SHEPHERD (HORIZON 2020 funding PJ)	 Special Condition Light UASやSORA、U-SpaceのAMC/MoCと Guidance Materialで要件を規定する際の既存の標準の不足を分析 AW Dronesでスコープ外とされていた、技術的観点でのギャップ分析を実施

*詳細は2023年度第1回意見交換会を参照

• 機体メーカ、ソリューション開発、運航管理、コンサルティング会社で構成

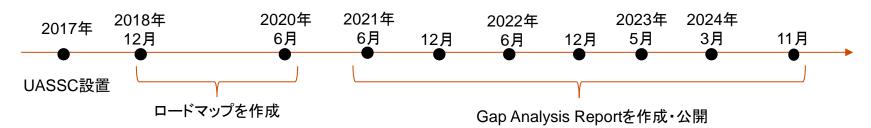
5.1. 国際標準規格の分析体制(SHEPHERDプロジェクト)

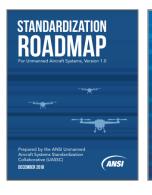
SHEPHERDプロジェクトでは、ASTM、EUROCAE、RTCA、ISO等の標準化機関が発行した規格の うち、EASAにとって優先度の高い46の規格を対象とした。

標準化機関	規格番号	概要
ASTM	F1583- 95(2019)	Standard Practice for Communications Procedures – Phonetics
	F2483-18	Standard Practice for Maintenance and the Development of Maintenance Manuals for Light Sport Aircraft
	F2908-18	Standard Specification for Unmanned Aircraft Flight Manual (UFM)
	F2909-19	Standard Practice for Maintenance and Continued Airworthiness of sUAS
	F3002-14a	Standard Specification for Design of the Command and Control System for sUAS
	F3003-14	Standard Specification for Quality Assurance of a sUAS
	F3005-14a	Standard Specification for Batteries for Use in sUAS
	F3178-16	Operational Risk Assessment of sUAS
	F3201-16	Standard Practice for Ensuring Dependability of Software Used in UAS
	F3266-18	Standard Guide for Training for Remote Pilot in Command of UAS Endorsement
	F3269-21	Methods to Safely Bound Behavior of Aircraft Systems Containing Complex Functions Using Run-Time Assurance
	F3298-19	Standard Specification for Design, Construction, and Verification of Lightweight UAS
	F3309/F330 9M-21	Standard Practice for Simplified Safety Assessment of Systems and Equipment in Small Aircraft

標準化機関	規格番号	概要
ASTM	F3322-18	Standard Specification for sUAS Parachutes
	F3330-18	Standard specification for Training and the Development of Training Manuals for the UAS Operator
	F3364-19	Standard Practice for Independent Audit Program for Unmanned Aircraft Operators
	F3365-19	Standard Practice for Compliance Audits to ASTM Standards on Unmanned Aircraft Systems
	F3366-19	Standard Specification for General Maintenance Manual (GMM) for a sUAS
	F3367-21a	Standard Practice for Simplified Methods for Addressing HighIntensity Radiated Fields (HIRF) and Indirect Effects of Lightning on Aircraft
	F3379-20	Standard Guide for Training for Public Safety Remote Pilot of UAS Endorsement
	F3389/F338 9M-21	Standard Test Method for Assessing the Safety of Small Unmanned Aircraft Impacts
	F3411-22a	UAS Remote ID and Tracking
	F3442/F344 2M-20	Detect and Avoid performance Requirements
	F3548-21	Standard Specification for UAS Traffic Management (UTM) UAS Service Supplier (USS) Interoperability
	F3600-22	Standard Guide for UAS Maintenance Technician Qualification

*詳細は2023年度第1回意見交換会を参照 48


5.1. 国際標準規格の分析体制(SHEPHERDプロジェクト)


前頁続き

標準化機関	規格番号	概要
EUROCAE	ED-12C	Software Considerations in Airborne Systems and Equipment Certification
	ED-80	Design Assurance Guidance for Airborne Electronic Hardware
	ED-266	Guidance on Spectrum Access, Use and Management for UAS
	ED-269	Minimum Operational Performance Standard (MOPS) for Geo-Fencing
	ED-270	Minimum Operational Performance Standard (MOPS) for Geo-Caging
	ED-279	Generic Functional Hazard Assessment (FHA) for UAS/RPAS
	ED-280	Guidelines for UAS safety analysis for the Specific category (low and medium levels of robustness)
	ED-282	Minimum Operational Performance Standards (MOPS) for UAS E-Reporting
	ED-301	Guidelines for the Use of Multi-GNSS Solutions for UAS Specific Category – Low Risk Operations SAIL I & II
IEC	62133- 2:2017 + AMD1:2021	Secondary cells and batteries containing alkaline or other non-acid electrolytes – Safety requirements for portable sealed secondary cells, and for batteries made from them, for use in portable applications – Part 2: Lithium systems
IEEE	802.15.3c- 2009	Standard for Information technology – Local and metropolitan area networks – Specific requirements – Part 15.3: Amendment 2: Millimetre-wave-based Alternative Physical Layer Extension

標準化機関	規格番号	概要
IEEE	802.11- 2020	Standard for Information Technology – Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks – Specific Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications
	802.22- 2017	Standard for Regional Area Networks
ISO	16803-1: 2016	Space - Use of GNSS-based positioning for road Intelligent Transport Systems (ITS). Part 1: Definitions and system engineering procedures for the establishment and assessment of performance
	16803-2: 2016	Space - Use of GNSS-based positioning for road Intelligent Transport Systems (ITS). Part 2: Assessment of basic performances of GNSS-based positioning terminals
	21384- 2:2021	Unmanned aircraft systems – Part 2: UAS components
	21384- 3:2023	Unmanned aircraft systems – Part 3: Operational procedures
	23629- 7:2021	UAS Traffic Management (UTM) Part 7 – Data Model for Spatial Data
	23665:2021	Unmanned Aircraft Systems – Training for personnel involved in UAS operations
RTCA	DO-365A	Minimum Operational Performance Standards (MOPS) for Detect and Avoid (DAA) Systems - Phase 1
	DO-366A	Minimum Operational Performance Standards (MOPS) for Airto-Air Radar for Traffic Surveillance
	DO-386	Vol I Minimum Operational Performance Standards for Airborne Collision Avoidance System Xu (ACAS Xu)

ANSIは、2018年にUASの標準化ロードマップを作成し、以降、ロードマップの更新に向けて定期的にギャップを分析したレポートを公表している。2024年11月に最新版を発表した。ロードマップ第3版は2025年中の公開を予定。

- 特定の領域をカバーできる公表済の規格、 仕様等が存在しない状態を特定
- ・ 標準化に先立ち、追加の研究開発の必要性、ギャップを埋めるアクション、ギャップ 対応の優先順位、研究開発や標準化を実施できる可能性のある組織(標準化機関 や研究機関)を記載

出所: ANSIウェブサイト PwC 50

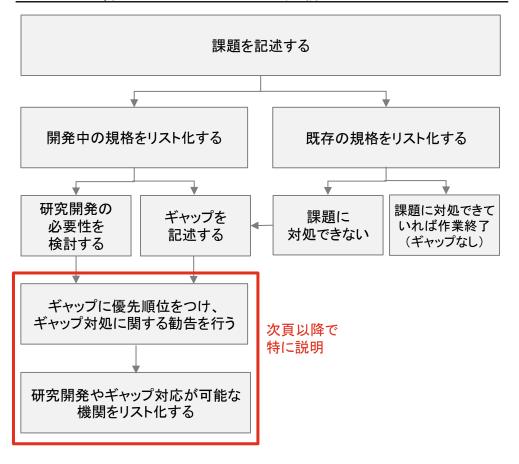
ANSIでは、耐空性と飛行運用(全般、アプリケーション固有、公共安全)の領域で4つのWGを設置し、それぞれの領域で課題を洗い出し、ギャップを特定している。

ANSIの作業部会(WG)と検討事項

WG 1 耐空性 航空機のシステムや管制ステーション との通信

WG 2 飛行基準 (一般事項)

- 一般的な飛行計画と運航
- 人員の訓練、資格、認証関する事項


WG 3 飛行基準 (アプリケー ション固有)

インフラ検査、環境アプリケーション、 商業サービス、労働安全

WG 4 飛行基準 (公共安全)

公共安全運航の実施に関するアプリ ケーション固有の運用

各WGにおけるギャップ分析のアプローチ

51

耐空性関連では19、飛行関連では13のギャップが存在する。

	番号	概要
耐空性	A1	UASの設計・建設(D&C)基準
	A2	UASシステムの安全性
	A4	アビオニクスとサブシステム
	A6	航空業界と携帯電話業界の標準の整合性
	A7	UAS航法システム
	A8	スプーフィングやジャミングを含む全地球航法衛星信号 (GNSS)干渉からの保護
	A9	探知·回避(DAA)能力
	A10	ソフトウェアの検討と承認
	A11	UASの飛行データとボイスレコーダー
	A12	UASのサイバーセキュリティ
	A13	電気システム
	A14	動力源と推進システム
	A15	騒音、排出ガス、燃料の排出
	A16	UASに対する様々な危険の緩和システム
	A17	UASの第三者上空飛行におけるリスク軽減策としてのパラシュートまたはドラッグシュート
	A18	UASの保守点検(M&I)
	A19	企業運用: 自動化/自律化と人工知能(AI)のレベル
	A20	免許不要のスペクトラム干渉の予測可能性
	A21	UASのためのブロックチェーン

	番号	概要
飛行基準	O1	プライバシー
(一般 事項)	O2	継続的な運用の安全性(COS)
1. 70	О3	目視外飛行(BVLOS)
	O4	人の上空でのUAS運用(OOP)
	O5	UASの運用と天候
	O6	UASデータの取り扱いと処理
	07	UTMサービス性能基準
	O8	リモートID: 直接ブロードキャスト
	O9	リモートID: ネットワークパブリッシング
-	O10	ジオフェンスの交換
	O11	ジオフェンスのプロビジョニングと処理
	O12	UASのための飛行場施設の設計と運用
	O13	UASサービスサプライヤー(USS)のプロセスと品質

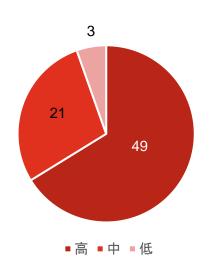
52

^{*}ロードマップ第1版でギャップとされていたGap A3(UASの品質保証、品質管理)、Gap A5 C3リンク性能要件は、対応済のためロードマップ第2版ではクローズ扱い

飛行(インフラ点検等のアプリケーション)関連で20、飛行(公共安全)関連で13、飛行要員の技能関連で8のギャップが存在する。

	番号	概要
飛行基準	I1	発電所および産業プロセスプラント資産のUAS検査
(アプリ ケーショ	12	クレーンの検査
ン固有)	13	ドローンを使用した建物ファサードの検査
	14	UASを使用した低層住宅および商業ビルの検査
	15	橋梁の点検
	16	鉄道検査: 危険物(HAZMAT)輸送のための車両検査
	17	鉄道検査: BVLOS運用
	18	鉄道検査: 夜間運行
	19	UASを使用した送電線、構造物、周辺の検査
	I10	UASを使用した農薬散布
	l11	UASによる商業用荷物の配達
	l12	職場で運用されるUASに対する労働安全要件
	l13	パイプラインおよび操業施設の検査-BVLOS 操作
	l14	パイプラインと操業施設の検査-センサーの検証と使用
	l15	空港業務におけるUAS
	I16	UASによる商業貨物輸送
	l17	UAS を利用した商業旅客エア・タクシー輸送(少数の旅客および/または貨物を運ぶ短距離便
	l18	UASによる商業旅客輸送(多数の旅客を運ぶ長距離便)
	l19	商業的センシングサービス
	I20	ニュース収集のためのsUASの利用

	番号	概要
飛行基準	S1	公共安全活動のためのsUASの使用
(公共 安全)	S2	UASを使用した危険物対応と輸送
X Y Y	S3	バイオハザードを含む輸送と墜落後の手順
	S4	法医学調査の写真測量
	S5	公共安全活動のためのペイロード・インターフェイスと制御
	S6	sUASの前方赤外線(IR)カメラセンサー機能
	S7	緊急対応時の自動化のためのC2ソフトウェア仕様
	S8	UAS対応ロボット
	S9	UASの軽減
	S10	公共安全活動のためのテザーUASの使用
	S11	UASの検知
	S12	UASのFEMA ICS運用、航空運用への統合
	S13	公共安全UAS運用のためのデータフォーマット
要員の	P1	用語
訓練、資格、認定	P2	マニュアル
ום ל ווווי אב	P3	インストラクターと機能領域資格
	P4	リモートパイロット以外のUAS搭乗員の訓練と認証
	P5	UASメンテナンス技術者
	P6	コンプライアンスと監査プログラム
	P7	ディスプレイとコントロール
	P9	UAS運用における人的要因


重要性、達成可能性、スコープ、効果の4つの観点でギャップを分析し、対応の優先度を決定している。

	基準		スコア	:	ランキング	
	・どの程度緊急に規格やガイダンスが必要か		重要			
重要性	プロジェクトが完了しなかったり、実施されなかったりした場合、どのような影響があるか	2	いくらか重要	∧= ¬ − ¬	唐 4	· rtr
	がったりした場合、とのような影音がの句が	1	重要でない	合計スコア	優先	迂度
				12	高	Tier 1
	特に他のプロジェクトとの関連で考えた場合、	3	短期間で完了	11	(2年以内	Tier 2
達成 可能性	このプロジェクトを今行うことに意味があるか	2	実施中	10	に対応)	Tier 3
- 3 100 12		1	新規	9		
				8	中 (5年)(中	
	• 多大な時間・労力・資金を必要とするか	3	低リソース	7	(5年以内に対応)	
スコープ	・現在入手可能な情報・ツール・リソースで完了できるか	2	中リソース	6		
	•標準化前の調査が必要か	1	強リソース	5	但	ŧ
				4		
		3	高リターン	7		
効果	完成したプロジェクトが業界にどのような影響を与えるか	2	中リターン			
	昔で すんのか	1	低リターン			

54

計73のギャップのうち、49のギャップを優先度の高いものと設定している。このうち、19件を最優先のTier 1に位置づけており、耐空性や飛行基準(一般事項)に関するギャップが多い。

優先度別の規格の件数

優先度高におけるTier別の規格の件数

Tier 1(19件)

- ■耐空性
- ■飛行基準(一般事項)
- ■飛行基準(インフラ点検、環境アプリケーション、商用、労働環境の安全性)
- ■飛行基準(公安)
- ■要員訓練(資格、認定基準)

Tier 2(16件)

- ■耐空性
- ■飛行基準(一般事項)
- 飛行基準(インフラ点検、環境アプリケーション、商用、労働環境の安全性)
- ■飛行基準(公安)
- ■要員訓練(資格、認定基準)

Tier 3(14件)

- ■耐空性
- ■飛行基準(一般事項)
- 飛行基準(インフラ点検、環境アプリケーション、商用、労働環境の安全性)
- ■飛行基準(公安)
- ■要員訓練(資格、認定基準)

ANSIが特定したギャップについて、PwCにて事業領域別に整理した。検討している国際標準化機関、WGへのReAMo プロジェクト実施者の参加状況、注視すべき規格を説明する。

事業領域* 整理の観点 • 機体設計 ASTM 個別システム RTCA 規格を検討している 機体製造 • C2 • SAE DAA 国際標準化機関及び EUROCAE • 整備 そのWG ISO JARUS 素材 • エネルギー源 ペイロード 装備品•周辺機器製造 動力・揚力・推進機構 WG議長や規格原案作成等、 ・ドローンポート 深い関与 WG∿のReAMo PJ 規格・ワークアイテム原案へ 実施者の参加状況 飛行 運航•操縦 の意見など等、浅い関与 • 操縱者技能 関与なし UTM 運航管理•運航支援 • 観測機器 ANSIのレポートと 通信 SHEPHERDプロジェクトの 注視すべき規格 両方で扱われている・改訂が アプリケーション サービス 勧告されている規格 保険

優先度の高いギャップのうち、Tier 1に含まれる規格は主にASTM、RTCA、SAE、EUROCAEで検討されている。特にRTCA SC-228での関与度が低い状況。

ReAMo PJ実施者の議長や規格原案作成等、深い関与

				優先度高 優先度 (Tier 2) (Tier 3		優先度低	ReAMo PJĘź ReAMo PJĘź ReAMo PJĘź	他者の議長や規格原案 施者の原案への意見な 施者の関与なし	『作成寺、深い関与 『ど等、浅い関与	
-1	· * 公士	ギャップ		標準化機関						
す	業領域		++797	ASTM	RTCA	SAE	EUROCAE	ISO	JARUS	
	機体設計	A1	UASの設計・建設(D&C)基準	F38.02	_]	S-18	_	_]	_	
		A2	UASシステムの安全性	F38.01	_	S-18, 18A AS-4	_	_	SRM	
		A4	アビオニクスとサブシステム	F38.01	SC-228	SAE ITC	WG-105	JTC1/SC6	SRM	
		A7	UAS航法システム	F38.01	SC-228	SAE ITC	WG-105	_	_	
		A10	ソフトウェアの検討と承認	F38.01	SC-240	S-18A A-6A3	WG-63 WG-117	_	_	
	個別 システム	A16	UASに対する様々な危険の緩和システム	_	_	E-41, G-28	_	_	_	
機体製造		A17	UASの第三者上空飛行におけるリスク軽減策として のパラシュートまたはドラッグシュート	F38.01	_	_	_	_	_	
		A11	UASの飛行データとボイスレコーダー	F38.01	SC-228	SAE ITC	WG-118	_	_	
		A12	UASのサイバーセキュリティ	F38.01	SC-216	_	WG-72	_	SRM	
		A19	企業運用: 自動化/自律化と人工知能のレベル	_	_	S-18, AS-4	WG-105	_	SRM	
		A21	UASのためのブロックチェーン	F38.01	_	S-18	_	_	_	
	C2	S7	緊急対応時の自動化のためのC2ソフトウェア仕様	F38.01	SC-240	_	WG-105	_	_	
	DAA	۸۵	探知·回避(DAA)能力	F38.01	SC-228					
	DAA	A9	(DAA) 配刀	F32	30-220		_	_	_	
	整備	A18	UASの保守点検(M&I)	_	_	SAE ITC	_	_	_	
	素材	_	_	_	_	_	_	_	_	
	エネルギー	_	_	_	_	_	_	_	_	
\+ / + /-	ペイロード	_	_	_	_		_	_	_	
装備品• 周辺機器		A13	電気システム	_	_	AE-10 AE-11	_	_	_	
製造	力・推進 機構	A14	動力源と推進システム	F38.01	SC-228	AE-7F	WG-113	_	_	
		A15	騒音、排出ガス、燃料の排出	_	_	A-21	_	TC 20/SC16	_	
PwC	ドローンポート	O12	UASのための飛行場施設の設計と運用	F38.04	SC-228	_	WG-105	_	_	

優先度の高いギャップのうち、Tier 1に含まれる規格は主にASTM、RTCA、SAE、EUROCAEで検討されている。特にRTCA SC-228での関与度が低い状況。

				先度高 優先度 Tier 2) (Tier 3		優先度低	ReAMo PJ実 ReAMo PJ実 ReAMo PJ実	施者の議長や規格原案 施者の原案への意見な 施者の関与なし	ミ作成等、深い関与 とど等、浅い関与
古出	± ₹ 55 ±*		پ ر ⊶	標準化機関					
事 录	美領域		ギャップ		RTCA	SAE	EUROCAE	ISO	JARUS
		O1	プライバシー	_	_	_	_	JTC1/SC 27 TC 20/SC 16	_
	運航	O2	継続的な運用の安全性(COS)		SC-228	AS-4 S-18A	WG-63	_	SRM
	~	О3	目視外飛行(BVLOS)	F38.03	SC-228	SAE ITC	WG-105	_	SRM
		O4	人の上空でのUAS運用(OOP)	F38.02	_	_	_	_	_
		P1	用語	F38	SC-228	_	_	_	_
運航•		P2	マニュアル	F38	SC-228	_	_	_	SRM
操縦		P3	インストラクターと機能領域資格	F38	SC-228	_	_	_	_
	操縦者技能	P4	リモートパイロット以外のUAS搭乗員の訓練と認証	F38	SC-228	_	_	_	SRM
		P5	UASメンテナンス技術者	F38	SC-228	_	_	_	_
		P6	コンプライアンスと監査プログラム	F38	SC-228	_	_	_	_
		P7	ディスプレイとコントロール	F38	SC-228	_	_	_	_
		P9	UAS運用における人的要因	F38	_	_	_	_	_
		O7	UTMサービス性能基準	F38.02	_	_	_	_	SRM
		O8	リモートID:直接ブロードキャスト型	F38.04	_	_	_	_	_
	UTM	O9	リモートID:ネットワーク型	F38.04	_	_	WG-105	_	SRM
運航管理• 運航支援	UTIVI	O10	ジオフェンスの交換	F38	_	_	WG-105	_	_
~		O11	ジオフェンスのプロビジョニングと処理	F38.04	_	_	WG-105	TC 20/SC 16	SRM
		O13	UASサービスサプライヤー(USS)のプロセスと品質	_	_	_	_	_	SRM
	観測機器	O5	UASの運用と天候	F38.03	SC-228	SAE ITC	_	_	_
		A6	航空業界と携帯電話業界の標準の整合性	F38.01	SC-228	_	WG-105	_	SRM
通信		A8	スプーフィングやジャミングを含む全地球航法衛星 信号(GNSS)干渉からの保護	_	SC-228	_	_	_	_
			免許不要のスペクトラム干渉の予測可能性	F38.03	_	_	_	_	_

58

アプリケーション固有の規格開発は主にASTMとその他の標準化機関で行われているとみられる。Tier1のギャップに対応した規格はまだなく、新しい規格の開発やベストプラクティスの作成が求められている。

				先度高 優先度 Tier 2) (Tier:		優先度中	ReAMo PJ実施 ReAMo PJ実施 ReAMo PJ実施	施者の議長や規格原3 施者の原案への意見な 施者の関与なし	≷作成等、深い関与 よど等、浅い関与
古光	* ^5 *			標準化機関					
争求	美領域		ギャップ	ASTM	RTCA	SAE	EUROCAE	ISO	JARUS
		O6	UASデータの取り扱いと処理	_	_	_	_	_	SRM
		11	発電所および産業プロセスプラント資産のUAS検査	_	_	_	_	_	_
		12	クレーンの検査	_	_	_	_	_	_
		13	ドローンを使用した建物ファサードの検査	E06.55	_	_	_	_	_
		14	UASを使用した低層住宅および商業ビルの検査	_	_	_	_	_	_
		15	橋梁の点検	E06.55	_	_	_	_	_
		16	鉄道検査: 危険物(HAZMAT)輸送のための車両 検査	_	_	_	_	_	_
		17	鉄道検査: BVLOS運用	AC-478	_	_	_	_	_
		18	鉄道検査: 夜間運行	AC-478	_	_	_	_	_
		19	UASを使用した送電線、構造物、周辺の検査	F38	_	_	_	_	_
サービス	アプリケー	I10	UASを使用した農薬散布	_	_	_	_	TC 23/SC 6	_
) —LX	ション	l111	UASによる商業用荷物の配達	AC-478	SC-228	S-18A	_	_	_
		l12	職場で運用されるUASに対する労働安全要件	_	_	_	_	TC 23/SC 6	_
		I13	パイプラインおよび操業施設の検査-BVLOS 操作	AC-478	_	_	_	_	_
		l14	パイプラインと操業施設の検査-センサーの検証と 使用	_	_	_	_	_	_
		l15	空港業務におけるUAS	_	SC-228	_	_	_	_
		I16	UASによる商業貨物輸送	F38	SC-228	_	_	_	_
		l17	UAS を利用した商業旅客エア・タクシー輸送(少数の旅客および/または貨物を運ぶ短距離便	F38	SC-228	_	_	_	_
		l18	UASによる商業旅客輸送(多数の旅客を運ぶ長距離便)	_	SC-228	_	WG-105	_	_
		l19	商業的センシングサービス	F38	_	_	_	_	_
		120	ニュース収集のためのsUASの利用	_	_	_	_	_	_

59

アプリケーション固有の規格開発は主にASTMとその他の標準化機関で行われているとみられる。

ReAMo P.I実施者の議長や規格原案作成等 深い関与

				是先度高 優先度 Tier 2) (Tier :		優先度低	ReAMo PJĘ ReAMo PJĘ ReAMo PJĘ	他名の議長や規格原象 施者の原案への意見な 施者の関与なし	₹作成寺、深い関与 よど等、浅い関与	
古出	# ^5 *		44° 5 may 1 P	標準化機関						
事	業領域		ギャップ	ASTM	RTCA	SAE	EUROCAE	ISO	JARUS	
		S1	公共安全活動のためのsUASの使用	F32.01	_	_	_	_	_	
		S2	UASを使用した危険物対応と輸送	F38	_	_	_	_	_	
		S3	バイオハザードを含む輸送と墜落後の手順	_	_	_	_	_	_	
			S4	法医学調査の写真測量	_	_	_	_		_
			S5	公共安全活動のためのペイロード・インターフェイス と制御	F38	_	_	_	_	_
	アプリケー	S6	sUASの前方赤外線(IR)カメラセンサー機能	_	_	_	_	_	_	
サービス	ション	S8	UAS対応ロボット	F54.09	_	_	_	_	_	
		S9	UASの軽減	_	SC-238	_	WG-115	_	_	
		S10	公共安全活動のためのテザーUASの使用	F38	_	_	_	_	_	
		S11	UASの検知	_	SC-228	_	_	_	_	
		S12	UASのFEMA ICS運用、航空運用への統合	_	_		_		_	
		S13	公共安全UAS運用のためのデータフォーマット	F38	_	_	_		_	
	保険	_	_	_	_	_			_	

(参考)ReAMo PJ実施者の標準化機関への参加状況

標準化機関の主要なWGに対するReAMo PJ実施者の規格策定への影響力や、情報収集能力には現状限りがある。

ReAMo PJ実施者の議長や規格原案作成等、深い関与 凡例: ReAMo PJ実施者の原案への意見など等、浅い関与 ReAMo PJ実施者の関与なし

標準化機関	WG	関与度
ASTM	F38 Unmanned Aircraft Systems	
	F38.01 Airworthiness	
	F38.02 Flight Operations	
	F38.03 Personnel Training, Qualification and Certification	
	F38.04 Infrastructure	
	F32 Search and Rescue	
	F39 Aircraft Systems	
	E06 Performance of Buildings	
	AC-478 BLOS Strategy & Roadmapping for UAS	
RTCA	SC-228 Minimum Performance Standards for Unmanned Aircraft Systems	
	SC-238 Counter UAS Systems	
	SC-240 Aviation Software Standards	

(参考)ReAMo PJ実施者の標準化機関への参加状況

標準化機関の主要なWGに対するReAMo PJ実施者の規格策定への影響力や、情報収集能力には現状限りがある。

ReAMo PJ実施者の議長や規格原案作成等、深い関与 凡例: ReAMo PJ実施者の原案への意見など等、浅い関与 ReAMo PJ実施者の関与なし

標準化機関	WG	関与度
SAE	A-21 Aircraft Noise Measurement Aviation Emission Modeling	
	A-6A3 Flight Control and Vehicle Management Systems Cmt	
	AE-7F Hydrogen	
	AE-8A Elec Wiring and Fiber Optic Interconnect Sys Install Committee	
	AE-10 High Voltage Committee	
	AE-11 Aging Models for Electrical Insulation in Hi-Enrgy Sys	
	AS-4JAUS Joint Architecture for Unmanned Systems Committee	
	AS-4UCS Unmanned Systems (UxS) Control Segment Architecture	
	E-41 Engine Corrosion – Runway Deicing Products Committee	
	G-28 Simulants for Impact and Ingestion Testing Committee	
	S-18 Aircraft And Sys Dev And Safety Assessment Committee	
	S-18A Autonomy Committee	
	S-18C Ongoing Safety Assessment Committee	
	S-18H Human Considerations for Safety Assessment Committee	
	SAE Industry Technologies Consortia (SAE傘下)	

(参考) ReAMo PJ実施者の標準化機関への参加状況

標準化機関の主要なWGに対するReAMo PJ実施者の規格策定への影響力や、情報収集能力には現状限りがある。

ReAMo PJ実施者の議長や規格原案作成等、深い関与 凡例: ReAMo PJ実施者の原案への意見など等、浅い関与 ReAMo PJ実施者の関与なし

標準化機関	WG	関与度
EUROCAE	WG-105 Unmanned Aircraft System (UAS)	
	WG-105 SG-1 Detect and Avoid	
	WG-105 SG-2 C3 and Security	
	WG-105 SG-3 UTM	
	WG-105 SG-4 Design and Airworthiness	
	WG-105 SG-5 Enhanced RPAS Automation	—(活動停止)
	WG-105 SG-6 SORA	
	WG-115 Counter UAS (C-UAS)	
	WG-117 Topics on Software Advancement	
	WG-63 Complex Aircraft Systems	SAE S-18と連携
ISO	TC 20/SC 16 Unmanned aircraft systems	
	TC 23/SC 6 Equipment for crop protection	
	JTC1/SC 6 Telecommunications and information exchange between systems	
	JTC1/SC 27 Information security, cybersecurity and privacy protection	
JARUS	JARUS Plenary	
	WG-Operations	
	WG-Airworthiness	
	WG-Safety Risk Management	

ANSIとSHEPHERD両方で改訂が提案されている規格について、BVLOS関連ではリスク評価のガイダンスと操縦士の訓練に関する記述の追加が勧告されており、EASAの規制と整合させることが必要。

+		ANSI	SHEPHERD PJでの
規格	ギャップ	分析内容·提言	分析内容•提言
ASTM F3178-16 Standard Practice for Operational Risk Assessment of sUAS	A2 UASシ ステムの 安全性	・ ASTM規格F3178-16を改訂すること (WK82110)により、本規格に含まれている標準 実施要領は、BVLOS飛行のWaiver、Exemption、 その他の飛行許可承認を求めるオペレータにとって有用な参考資料となりうる ・ リスク評価プロセスについては、最近作成された規制ガイダンス文書(FAA Order 8040.6Aや JARUS SORA v2.5等)を参照し、リスク軽減策を整理する ・ 付録X1には、申請者がリスク評価を実施する際に参照する表を例示する ・ 付録X2は、定量的な人口密度地図データの使用に関する考慮事項、地上リスク評価を実施するための高レベルのガイダンス、提案および参考文献を提供する ・ 付録X3は、UASと有人航空機間の空中リスクを評価するために有用な情報を提供する	 航空における運航リスク評価の基本原則に沿ったものであるが、SORAが提供する総合的なアプローチと比較し運航安全目標やリスク軽減策が不足している。 部分的にSORAを補完できるものではあるが、一部の用語や概念は米国特有のものであり、欧州の枠組みに合わせて調整が必要
ASTM F3266-18 Standard Guide for Training for Remote Pilot in Command of UAS Endorsement	O3目視外 飛行 (BVLOS)	・ 操縦士の技能と訓練は、BVLOS飛行にとって特に重要であり、ASTM F3266-18にBVLOSに関する付録を追加することが期待される	• SORAのリスク評価で適合すべき運航安全目標 OSO #19 – Safe recovery from Human Error について、SAIL III-IVの飛行でクルーのリソース 管理の仕様を提供することが求められている。

UTMのサービス性能基準を定めた規格ASTM F3548-21はEASAのU-space規則で既に参照されており、改訂状況を把握することが重要。

+8+4		ANSI	SHEPHERD PJでの
規格	ギャップ	分析内容•提言	分析内容·提言
ASTM F3548-21 Standard Specification for UAS Traffic Management (UTM) UAS Service Supplier (USS) Interoperability	O7 UTM サービス性 能基準	 研究開発を行っているコミュニティ(NASA/FAA Research Transition Team(RTT)、FAA UTM パイロットプロジェクト、UAS テストサイト、GUTMA等)によって実施されている研究や飛行実証から発展する性能基準や関連する相互運用性基準を採用する方向である。 ASTM F3548-21 は、EASAのU-space規制のガイダンス資料(Article 10(5) UAS flight authorisation service)においても、準拠可能な手段として特定されている。本規格の改訂は、実証試験やU-space規則へのマッピングを通じて特定されたギャップに対処し、その他の予想されるニーズに対応することを目的としている。 	 EASAのU-space規則への適合状況を評価したところ、Strategic conflict detectionとDiscovery & Synchronization Service (DSS)の要件に一部対応していないため追記が必要

65

(参考)主要な国際標準:機体関連(1/5)

機体関連は、計22の規格・Work Itemが公開又は検討されている。

標準化機関	WG	規格番号	Work Item	概要
3GPP	SA WG3 - Security and Privacy	TR 33.759	Study on security enhancements of Uncrewed Aerial Systems (UAS) Phase 3	無人航空機システム(UAS)のセキュリティ強化に関する研究フェーズ3
	SA WG5 - Management, Orchestration and Charging	TR 28.853	Study on charging aspects of uncrewed aerial systems	無人航空機システムの充電に関する研究
ASTM	F38 Unmanned Aircraft Systems - F38.01 Airworthiness	F3547-24	Standard Specification for Fuel Cell Power Systems for Use in Small Unmanned Aircraft Systems (sUAS)	小型無人航空機システム(sUAS)で使用する 燃料電池電源システムの標準仕様
	F38 Unmanned Aircraft Systems - F38.01 Airworthiness	F3686-24	Standard Practice for Production Approval of Unmanned Aircraft Systems (UAS)	無人航空機システム(UAS)の製造承認に関する標準規格
	F38 Unmanned Aircraft Systems - F38.01 Airworthiness	WK91696	Revision of F3686-24 Standard Practice for Production Approval of Unmanned Aircraft Systems (UAS)	F3686-24 無人航空機システム(UAS)の製造承認に関する標準規格の改訂
	F38 Unmanned Aircraft Systems - F38.02 Flight Operations	WK91013	Revision of F3673-23 Standard Specification for Performance for Weather Information Reports, Data Interfaces, and Weather Information Providers (WIPs)	F3673-23 気象情報レポート、データインターフェイス、および気象情報プロバイダー(WIP)のパフォーマンスの標準仕様の改訂

(参考)主要な国際標準:機体関連(2/5)

機体関連は、計22の規格・Work Itemが公開又は検討されている。

標準化機関	WG	規格番号	Work Item	概要
EUROCAE	WG-117 Aviation Software Standards	ER-XXX	Report on plans for deliverables and future work for the development of aviation software standards	航空ソフトウェア標準の開発に関する成果物と今後の作業の計画に関する報告
EUROCAE	WG-76 AIS and MET Data Link services -SG-2 Automated Atmospheric Turbulence Derivation Techniques	ED-XXX	MASPS for Automated Atmospheric Turbulence Derivation Techniques	自動大気乱流導出技術の最低航空システ ム性能基準
IEEE	UASOPPGAW G - Unmanned Aircraft Systems Oblique Photogramme try in Power Grid Application Working Group		Standard for Unmanned Aircraft Systems based Oblique Photogrammetry Used for Survey and Design of 110 kV and Above Power Transmission and Transformation Projects	110 kV以上の送電および変電プロジェクトの調査と設計に使用される無人航空機システムに基づく斜め写真測量の標準

(参考)主要な国際標準:機体関連(3/5)

機体関連は、計22の規格・Work Itemが公開又は検討されている。

標準化機関	WG	規格番号	Work Item	概要
IEEE	UASP-HLUAS - Unmanned Aircraft Systems in Power Grid Applications— Heavy-lift Unmanned Aircraft Systems	P1936.9	Standard for Technical Requirements for Electric Unmanned Aircraft Systems for Power Grid Material Lifting	電力網資材運搬用電動無人航空機システムの技術要件に関する規格
IEEE	UASP-HLUAS - Unmanned Aircraft Systems in Power Grid Applications— Heavy-lift Unmanned Aircraft Systems	P1936.10	Recommended Practice for Use of Electric Unmanned Aircraft Systems for Power Grid Material Lifting	電力網資材運搬のための電動無人航空機 システムの使用に関する推奨プラクティ ス

(参考)主要な国際標準:機体関連(4/5)

機体関連は、計22の規格・Work Itemが公開又は検討されている。

標準化機関	WG	規格番号	Work Item	概要
ISO	TC 20/SC 16/WG 4 UAS Traffic Management	ISO/AWI 25248	Unmanned Aircraft System Type of Identifier Code and Graphical symbol	無人航空機システム識別コードおよびグ ラフィカルシンボルの種類
ISO	TC 20/SC 16/WG 5 Testing and evaluation	ISO/PWI 24222	Civil small and light unmanned aircraft systems (UAS) under high-temperature and low-temperature conditions — Test methods	高温および低温条件下での民間小型軽量 無人航空機システム (UAS) — 試験方 法
ISO	TC 20/SC 16/WG 8 Counter UAS	ISO/AWI 25216	Categorization and classification of unmanned aircraft (UA) detection and countermeasure system	無人航空機 (UA) 検知・対抗システムの 分類と等級分け
ISO	TC 20/SC 16/WG 9 UAS Hydrogen Propulsion Systems	ISO/CD 25009	Unmanned aircraft systems — General requirements and test methods for the hydrogen fuel gas pipes of gaseous hydrogen fuel cell powered UAV	無人航空機システム — ガス水素燃料電池 駆動UAVの水素燃料ガスパイプの一般要 件と試験方法
ISO	TC 20/SC 16/WG 9 UAS Hydrogen Propulsion Systems	ISO/CD 25013	Unmanned aircraft systems — General requirements and test methods for the attachable hydrogen cylinders of gaseous hydrogen fuel cell powered UAV	無人航空機システム — ガス水素燃料電池 駆動型無人航空機の取り付け可能な水素 シリンダーの一般要件と試験方法
ISO	TC20/SC 17	ISO/AWI 5491	Vertiports — Infrastructure and equipment for vertical take-off and landing (VTOL) of electrically powered cargo unmanned aircraft systems (UAS)	バーティポート 一電動貨物無人航空機システム (UAS) の垂直離着陸 (VTOL) のためのインフラストラクチャ・機器
ISO	TC 172/SC 6 Geodetic and surveying instruments	ISO/AWI 17123- 10	Optics and optical instruments — Field procedures for testing geodetic and surveying instruments — Part 10: UAV photogrammetry systems	光学機器および光学機器 一 測地機器および測量機器の試験のための現場手順 ― Part 10: UAV写真測量システム

(参考)主要な国際標準:機体関連(5/5)

機体関連は、計22の規格・Work Itemが公開又は検討されている。

標準化機関	WG	規格番号	Work Item	概要
ISO	TC 197/SC 1 Hydrogen at scale and horizontal energy systems	1	Hydrogen Technologies — Aerial Vehicles — Part 1: Liquid Hydrogen Fuel Storage System	水素技術 ― 航空機 ― Part 1 : 液体水素燃料貯蔵システム
ISO	TC 20/SC 16/WG 1 General	ISO/CD 21895	Categorization and classification of civil unmanned aircraft systems	民間用UASの分類と分類
JARUS	WG- Airworthiness	JAR_doc_24	JARUS CS-UAS, Annex B – Management of Multiple Simultaneous UA Flight Operations MSO	JARUS CS-UAS、付録B – 複数の同時UA 飛行運用の管理MSO
JARUS	WG- Airworthiness	JAR_doc_33	JARUS CS-HAPS, Airworthiness recommendations for HAPS	JARUS CS-HAPS、HAPSの耐空性に関する推奨事項
RTCA	SC-240 Aviation Software Standards	DO-YYYA	Incorporation of Commercial Off the Shelf Software and/or Open Source Software	市販の既製ソフトウェアおよび/または オープンソース ソフトウェアの組み込み
SAE	AS-4JAUS Joint Architecture for Unmanned Systems Committee	AIR5665C	Architecture Framework for Unmanned Systems	無人システムのアーキテクチャフレーム ワーク

(参考)主要な国際標準:運航管理(UTM)(1/1)

運航管理は、計4つの規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
ASTM	F38 Unmanned Aircraft Systems - F38.02 Flight Operations	WK91742	Revision of F3411-22a Standard Specification for Remote ID and Tracking	F3411-22a リモートIDおよび追跡の標準 仕様の改訂
EUROCAE	WG-105 SG-3 UTM	ED-269 Change 1	MOPS For Geofencing	ジオフェンシング用 MOPS
EUROCAE	WG-105 SG-3 UTM		NID Data Exchange ICD for indirect exchanges between USSPs and between USSPs and Authorised Users	USSP間およびUSSPと許可ユーザー間の間接的な交換のためのNIDデータ交換ICD
EUROCAE	WG-51 SG-1		MOPS for 1090 MHz Extended Squitter ADS-B and TIS-B Change 2	1090MHz拡張スキッタADS-BおよびTIS- BのMOPS変更2

(参考)主要な国際標準:衝突回避(Detect and Avoid)(1/1)

DAAは、2つの規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
RTCA	SC-228 Minimum Performance Standards for Unmanned Aircraft Systems	DO-365C Change 1	Minimum Operational Performance Standards (MOPS) for Detect and Avoid (DAA) Systems	衝突回避システムの最低運用性能基準
RTCA	SC-228 Minimum Performance Standards for Unmanned Aircraft Systems	DO-366B	DAA Radar MOPS Update	DAA レーダー MOPS アップデート

<u>(参考)主要な国際標準:オペレーション(Operation)(1/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
ASTM	E54 Homeland Security Applications - E54.09 Response Robots	WK85836	New Test Method for Evaluating Aerial Response Robot Capabilities: Maneuvering: Fly Through Confined Spaces	エアリアルレスポンスロボットの能力を 評価するための新しいテスト方法:操 縦:限られた空間の飛行
ASTM	E54 Homeland Security Applications - E54.09 Response Robots	WK85838	New Test Method for Evaluating Aerial Response Robot Capabilities: Takeoff and Land	エアリアルレスポンスロボットの能力を 評価するための新しいテスト方法:離陸 と着陸
ASTM	E54 Homeland Security Applications - E54.09 Response Robots	E3426/E3426M- 24	Standard Test Method for Evaluating Aerial Response Robot Endurance	空中対応ロボットの耐久性を評価するための標準試験方法
ASTM	F38 Unmanned Aircraft Systems - F38.01 Airworthiness	WK90326	New Practice for UAS Ground Control System Human Factors	UAS地上管制システムのヒューマンファ クターに関する新たな実践

C 73

<u>(参考)主要な国際標準:オペレーション(Operation)(2/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
IEEE	Mesh Deployment of Multi-rotor Unmanned Aircraft Systems for Inspection Subgroup	P1936.7	Standard for Mesh Deployment of Multi-Rotor Unmanned Aircraft Systems for Inspection of Overhead Transmission and Distribution, and Outdoor Substation Facilities	架空送電・配電設備および屋外変電所設備の検査のためのマルチローター無人航空機システムのメッシュ展開に関する標準
IEEE	COM/AerCom - SC/PPSMUA S - P1936.8 Standard for Photovoltaic Power Station Monitorning by Unmanned Aircraft System	P1936.8	Standard for Monitoring of Photovoltaic Power Stations Using Unmanned Aircraft Systems	無人航空機システムを用いた太陽光発電所の監視に関する標準
IEEE	•	P1936.11	Standard for Requirements of Laying Out Pilot Ropes by Unmanned Aircraft Systems for Overhead Power Line Installations	架空送電線施設における無人航空機システムによるパイロットロープの敷設要件 に関する標準

<u>(参考)主要な国際標準:オペレーション(Operation)(3/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
IEEE	PLDD - Pilot Line Deployment Devices Based on a UAS	P1936.12	Standard for Verification of Pilot Line Deployment Devices Based on Unmanned Aircraft Systems for Overhead Power Line Installations	架空送電線施設における無人航空機シス テムによるパイロットライン展開装置の 検証に関する標準
IEEE	ODLWG - Overhead Distribution Lines Working Group	P1936.13		無人航空機システムによる架空配電線の 検査中の画像収集の推奨方法
IEEE	UASPGA-MSSO - Unmanned Aircraft Systems in Power Grid Applications— UAS Multi- Spectral Scanning Operations for Overhead Transmission Lines	P1936.14	Standard for Multi-Spectral Scanning of Overhead Transmission Lines by Unmanned Aircraft Systems	無人航空機システムによる架空送電線のマルチスペクトルスキャンの標準

75

<u>(参考)主要な国際標準:オペレーション(Operation)(4/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
ISO/IEC	JTC 1/SC 17	ISO/IEC 22460- 1	Cards and security devices for personal identification — ISO UAS license and drone/UAS security module — Part 1: Physical characteristics and basic data sets for UAS licence	個人識別用のカードとセキュリティデバイス — ISO UASライセンスおよびドローン/UASセキュリティモジュール — Part 1: UASライセンスの物理的特性と基本データセット
ISO/IEC	JTC 1/SC 17	ISO/IEC 22460- 2:2024	Cards and security devices for personal identification — ISO UAS license and drone/UAS security module — Part 2: Drone/UAS security module	個人識別用のカードとセキュリティデバイス — ISO UASライセンスおよびドローン/UASセキュリティモジュール — Part 2:ドローン/UAS セキュリティモジュール
ISO/IEC	JTC 1/SC 17	ISO/IEC AWI 22460-3	Cards and security devices for personal identification — ISO UAS license and drone/UAS security module — Part 3: Logical data structure, access control, authentication and integrity validation for drone license	個人識別用のカードとセキュリティデバイス — ISO UASライセンスおよびドローン/UASセキュリティモジュール — Part 3:ドローンライセンスの論理データ構造、アクセス制御、認証、整合性検証

<u>(参考)主要な国際標準:オペレーション(Operation)(5/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
JARUS	WG-SRM	JAR_doc_25	JARUS guidelines on Specific Operations Risk Assessment (SORA)	特定運用リスク評価(SORA)に関する JARUSガイドライン
JARUS	WG-SRM	JAR_doc_26	JARUS guidelines on SORA Annex A Guidelines on collecting and presenting system and operation information for a specific UAS operation	SORAに関するJARUSガイドライン Annex A 特定のUAS運用に関するシス テムおよび運用情報の収集と提示に関 するガイドライン
JARUS	WG-SRM	JAR_doc_27	JARUS guidelines on SORA Annex B Integrity and assurance levels for the mitigations used to reduce the intrinsic Ground Risk Class	SORAに関するJARUSガイドライン Annex B 固有の地上リスククラスを軽 減するために使用される緩和策の完全 性と保証レベル
JARUS	WG-SRM	JAR_doc_28	JARUS guidelines on SORA Annex E Integrity and assurance levels for the Operational Safety Objectives (OSO)	SORAに関するJARUSガイドライン
JARUS	WG-SRM	JAR_doc_29	JARUS guidelines on SORA Annex F Theoretical Basis for Ground Risk Classification and Mitigation	SORAに関するJARUSガイドライン Annex F 地上リスクの分類と軽減に関 する理論的根拠
JARUS	WG-SRM	JAR_doc_30	JARUS guidelines on SORA Annex I Glossary of Terms	SORAに関するJARUSガイドライン Annex I 用語集
JARUS	WG-SRM	JAR_doc_31	JARUS guidelines on SORA Cyber Safety Extension	SORAに関するJARUSガイドライン サイバーセーフティ拡張
JARUS	WG-SRM	JAR_doc_32	JARUS guidelines on SORA Explanatory Note for Edition 2.5	SORAに関するJARUSガイドライン 2.5 版の説明文
JARUS	WG4&WG6	-	JARUS guidelines on SORA Annex C Strategic Mitigation Collision Risk Assessment	
JARUS	WG4&WG6	-	JARUS guidelines on SORA Annex D Tactical Mitigation Collision Risk Assessment	SORAに関するJARUSガイドライン Annex D 戦術的緩和衝突リスク評価

<u>(参考)主要な国際標準:オペレーション(Operation)(6/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
NATO		STANAG 7192 Ed: 2	PRINCIPLES UNDERPINNING MEDICAL STANDARDS FOR OPERATORS OF UNAMMANNED AERIAL SYSTEMS (UAS) - AAMedP-1.25 EDITION B	無人航空機システム(UAS)の運用者の医療基準を支える原則- AAMedP-1.25、編B
SAE	AS-4UCS Unmanned Systems (UxS) Control Segment Architecture	AIR6514A	UxS Control Segment (UCS) Architecture: Interface Control Document (ICD)	UxS制御セグメント (UCS)アーキテク チャ:インターフェース制御ドキュメン ト (ICD)
SAE	AS-4UCS Unmanned Systems (UxS) Control Segment Architecture	AIR6521A	Unmanned Systems (UxS) Control Segment (UCS) Architecture: Data Distribution Service (DDS)	無人システム(UxS)制御セグメント (UCS)アーキテクチャ:データ配信サー ビス(DDS)
SAE	AS-4UCS Unmanned Systems (UxS) Control Segment Architecture	AS6512C	Unmanned Systems (UxS) Control Segment (UCS) Architecture: Architecture Description	無人システム(UxS)制御セグメント (UCS)アーキテクチャ: アーキテクチャ の記述
SAE	AS-4UCS Unmanned Systems (UxS) Control Segment Architecture	AS6513C	Unmanned Systems (UxS) Control Segment (UCS) Architecture: Conformance Specification	無人システム(UxS)制御セグメント (UCS)アーキテクチャ:コンフォーマン ス仕様

<u>(参考)主要な国際標準:オペレーション(Operation)(7/7)</u>

オペレーションは、計31の規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
SAE	AS-4UCS Unmanned Systems (UxS) Control Segment Architecture	AS6518C	Unmanned Systems (UxS) Control Segment (UCS) Architecture: UCS Architecture Model	無人システム(UxS)制御セグメント (UCS)アーキテクチャ: UCSアーキテク チャモデル
SAE	PNT Position, Navigation, and Timing	SAE1027	Navigation System Performance Requirements for Unmanned Aircraft Systems	UASのナビゲーションシステムの性能 要件
SAE	PNT Position, Navigation, and Timing	SAE1027/1		中リスク特定保証および完全性レベル の運用におけるUASのナビゲーション システム性能要件

(参考)主要な国際標準:自動化(Automation)

自動化は、3つの規格・Work Itemが公開又は検討がされている。

標準化機関	WG	規格番号	Work Item	概要
ISO	TC 20/SC 16/WG 6 UAS subsystems			民間無人航空機システム (UAS) の自 律飛行制御レベルの分類
ISO	TC 20/SC 16/WG 6 UAS subsystems		Civil small and light multi-copter unmanned aircraft docking system — General requirements	民間用小型軽量マルチコプター無人航空機ドッキングシステム — 一般要件
JARUS	WG- Automation			空域環境の自動化における考慮事項に 関するJARUSホワイトペーパー

Thank you

pwc.com

© 2025 PwC Consulting LLC. All rights reserved.

PwC refers to the PwC network member firms and/or their specified subsidiaries in Japan, and may sometimes refer to the PwC network. Each of such firms and subsidiaries is a separate legal entity. Please see www.pwc.com/strucrure for further details.

This content is for general information purposes only, and should not be used as a substitute for consultation with professional advisors.